تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,101,541 |
تعداد دریافت فایل اصل مقاله | 97,208,170 |
بهینهسازی الگوی کشت با استفاده از نرم افزار AquaCrop-GIS (مطالعه موردی: دشت دهلران، استان ایلام) | ||
تحقیقات آب و خاک ایران | ||
مقاله 14، دوره 49، شماره 4، مهر و آبان 1397، صفحه 865-877 اصل مقاله (892.3 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2017.242981.667770 | ||
نویسندگان | ||
گلستان پرواز1؛ محمود رستمی نیا* 2؛ حمزه علی علیزاده3 | ||
1دانشجوی کارشناسیارشد علوم و مهندسی خاک، دانشگاه ایلام | ||
2هیات علمی دانشگاه ایلام | ||
3هیات علمی/ دانشگاه ایلام | ||
چکیده | ||
بهینهسازی الگوی کشت یکی از مهمترین راهکارهای افزایش بهرهوری آب و حفاظت از منابع آب محدود کشور میباشد. هدف از این مطالعه بهینهسازی الگوی کشت دشت دهلران در استان ایلام مبتنی بر تغییرات مکانی ویژگیهای شیمیایی و فیزیکی خاک، مقدار آب در دسترس، کیفیت آب و سطح آبهای زیرزمینی میباشد. در این راستا دشت دهلران به چهار ناحیه اراضی تحت پوشش شبکههای میمه، دویرج، سامانه گرمسیری و اراضی تحت پوشش چاهها تقسیمبندی شد. سپس با استفاده از اطلاعات میدانی، نرمافزار AquaCrop-GIS واسنجی و صحتسنجی شد. در نهایت توابع تولید محصولات مختلف استخراج و با استفاده از روش برنامهریزی خطی و تابع هدف حداکثر درآمد خالص، الگوی کشت بهینهسازی شد. نتایج نشان داد AquaCrop-GIS ابزار قدرتمندی برای تحلیل تغییرات مکانی پارامترهای مؤثر بر عملکرد محصول بوده و الگوی کشت در یک دشت تحت تأثیر تغییرات مکانی این پارامترها میباشد. همچنین با بهینهسازی الگوی کشت متناسب با کمّیت و کیفیت آب و ویژگیهای شیمیایی و فیزیکی خاک در مناطق مختلف دشت دهلران میتوان با مصرف مقدار آب یکسان درآمد و بهرهوری آب را بین 30 تا 120 درصد افزایش داد. | ||
کلیدواژهها | ||
سامانه گرمسیری؛ تابع تولید؛ تغییرات مکانی؛ واسنجی | ||
مراجع | ||
Abrha, B., Delbecque Raes, D., Tsegay, A., Todorovic, M., Heng, L., Vanutrecht, E., Geerts, S., Garcia-Vila, M., Deckers, S. (2012). Sowing strategies for barley (Hordeum Vulgare L.) based on modelled yield response to water with AquaCrop. Expl. Agric. 48 (2), 252–271. Alizadeh, H.A., Nazari, B., Parsinejad, M., Ramezani Eetedali, H., and Janbaz, H.R. (2010). Evaluation of AquaCrop model on wheat deficit irrigation in Karaj area. Iran J. Irrig Drain 2,273–283. (In Persian with English abstract). Chiu, Y. C., Nishikawa, T., and Yeh, W. W. G. (2010). Optimal pump and recharge management model for nitrate removal in the Warren Groundwater basin, California. J Water Res. Pl, 136(3), 299-308. Farahani H.J., Izzi G., and Oweis T.Y. (2009). Parameterization and evaluation of the Aquacrop model for full and deficit irrigated Cotton. Agron. Agronomy journal, 101(3), 469-476. Fereres, E., Soriano, M.A. (2007). Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58, 147–159. García-Vilaa, M., and Fereresa, E. (2012). Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. Europ. J. Agronomy 36, 21– 31. Ghasemi, M.M., Karamouz, M. and Shui, L.T.(2016). Farm-based cropping pattern optimization and conjunctive use planning using piece-wise genetic algorithm (PWGA): a case study. Modeling Earth Systems and Environment, 2(1), 1-12. Hassani S, Ramroodi M, Naghashzadeh M. (2016). Designing cropping pattern by using analytical hierarchy process to allow for optimal exploitation of water. Electronic Journal of Biology. 12, 43-47. Heng, L. K., Hsiao, T. C., Evett, S., Howell, T., and Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. American Society of Agronomy, 101, 488-498. 30. Hsiao, T. C., Heng, L. K., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E. (2009). AquaCrop-the FAO crop model to simulate yield response to water, III: Parameterization and testing for maize. Agronomy Journal, 101, 448-459. Jiang, L., Ting, Z., Xiaomin, Maoa., Adebayo, A. (2016). Modeling crop water consumption and water productivity in the middle reaches of Heihe River Basin. Computers and Electronics in Agriculture. 123,242–255. Jiang, Y., Xu, X., Huang, Q.Z., Huo, Z.L., Huang, G.H. (2015). Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River Basin using a distributed agro-hydrological model. Agr. Water Manage. 147, 67–81. Kangrang, A., & Compliew, S. (2010). An application of linear programming model for planning dry-seasonal irrigation system. Trends in Applied Sciences Research, 5(1), 64-70. Kim, D., Kaluarachchi, J. (2015). Validating FAO AquaCrop using Landsat images and regional crop information. Agr. Water Manage. 149, 143–155. Kumar, P., Sarangi, A., Singh, D. K., and Parihar, S. S. (2014). Evaluation of AquaCrop model in predicting wheat yield and water productivity under irrigated saline regimes. Irrigation and Drainage, 63, 474–487. Langhorn, C.(2015). Simulation of climate change impacts on selected crop yields in southern Alberta (Doctoral dissertation, Lethbridge, Alta: University of Lethbridge, Dept. of Geography). Lorite, I.J., García-Vila, M., Santos, C., Ruiz-Ramos, M., Fereres, E. (2013). AquaData and AquaGIS: two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Comput. Electron. Agr. 96 (96), 227–237. Mirkarimi, S. H., Joolaie, R., Eshraghi, F., & Abadi, F. S. B. (2013). Application of fuzzy goal programming in cropping pattern management of selected crops in Mazandaran province: Case study of Amol township. International Journal of Agriculture and Crop Sciences, 6(15), 1062-1067. Paredes, P., Wei, Z., Liu, Y., Xu, D., Xin, Y., Zhang, B., Pereira, L.S. (2015). Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agr. Water Manage. 152, 57–71. Raes, D., Steduto, P., Hsiao, T. C., and Fereres, E.(2009). AquaCrop-The FAO crop model for predictingyield response to water: II. Main algorithms and soft ware description. Agron. J. 101, 438-447 Raes, D., Steduto, P., Hsiao, T.C., Fereres, E. (2013). Refernce Manual: AquaCrop Plug -in Program Version (4.0). FAO, Land and Water Division, Rome, Italy. Shekari, H. (2017). Optimization of cropping pattern in fields with arid and hot conditions for different crops in Dehloran area. PhD thesis. Shreedhar, R., Hiremath, CG., Shetty, GG. (2015). Optimization of Cropping pattern using Linear Programming Model for Markandeya Command Area. International Journal of Scientific & Engineering Research. 6(9),1311-1326. Singh, A.K., R. Tripathy, and U.K. Chopra. 2008. Evaluation of CERESWheat and CropSyst models for water—Nitrogen interactions in wheat crop. Agricultural water management. 95:776–786. Steduto, P., Hsiao, T.C., Raes, D., Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response water: I concepts and underlying principles. Agron. J.101 (3), 426–437. Tomohari, H., Okamoto, K., yoshihiro, M., Nohara, D. 2015. An optimization scheme of cropping pattern under the variation of water and climate condition. Proceeding of the 36th IAHR World Congress. 28 June – 3 July, 2015, The Hague, the Netherlands. Vanuytrecht, E., Raes, D., Steduto, P., Hsiao, T.C., Fereres, E., Heng, L.K., Garcia Vila, M., Mejias Moreno, P. (2014). AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 62, 351–360. Voloudakis, D., Karamanos, A., Economou, G., Kalivas, D., Vahamidis, P., Kotoulas, V., Kapsomenakis, J., Zerefos, C. (2015). Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis. Agr. Water Manage. 147, 116–128.
| ||
آمار تعداد مشاهده مقاله: 1,434 تعداد دریافت فایل اصل مقاله: 1,278 |