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ABSTRACT:Remotely sensed imagery is proving to be a useful tool to estimate water depths in coastal
zones. Bathymetric algorithms attempt to isolate water attenuation and hence depth from other factors by
using different combinations of spectral bands. In this research, images of absolute bathymetry using two
different but related methods in a region in the southern Caspian Sea coasts has been produced. The first
method used a Single Band Algorithm (SBA) and assumed a constant water attenuation coefficient throughout
the blue band. The second method used Principal Components Analysis (PCA) to adjust for varying water
attenuation coefficients without additional ground truth data. PCA method (r=-0.672394) appears to match
our control points slightly better than single band algorithm (r=-0.645404). It is clear that both methods can be
used as rough estimates of bathymetry for many coastal zone studies in the southern Caspian Sea such as near
shore fisheries, coastal erosion, water quality, recreation siting and so forth. The presented methodology can
be considered as the first step toward mapping bathymetry in the southern Caspian Sea. Further research must
investigate the determination of the nonlinear optimization techniques as well as the assessment of these

models’ performance in the study area.
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INTRODUCTION

Remotely sensed imagery is proving to be a useful
tool to estimate water depths in coastal zones around
the world. Procedures have been developed that isolate
solar reflectance due to water depth from other factors
(Kumar and Jayappa, 2009; Ehsani and Quiel, 2010;
Zhang et al., 2010; Siddiqui, 2011; Odindi and
Mhangara, 2012; Kowkabi et al., 2013; Mahmoodzadeh,
2007). For instance, Lyzenga (1978) proposed a modified
exponential depth model for clear shallow waters,
ignoring the internal reflection in the water column;
Louchard et al. (2003) used radiative transfer
calculations to generate a spectral library of remote
sensing reflectance to classify obtained reflectance
according to bottom type and water depth; Leu and
Chang (2005) used two dimensional wave spectrums to
estimate water depths based on the principle that while
waves propagate toward shoreline, these wave lengths
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decrease due to decrements in water depth; Fonstad
and Marcus (2005) combined remote sensing imagery
and open channel flow principals to estimate water
depths in clear rivers; Ceyhun and Yalgyn (2010)
proposed Artificial Neural Networks (ANN) to estimate
water depths in shallow waters. ANNs allows
considering nonlinear multi-parameter relationship
between reflectance from different spectral bands and
water depths. These algorithms attempt to isolate
water attenuation and hence depth from other factors
by using different combinations of spectral bands.
These multiple band techniques depend upon large
amounts of ground truth data and a fine enough
resolution to discriminate bottom types; they are also
limited to the sensitivity to attenuation of the longest
wavelengths used. These procedures are invaluable
to Iranian coastal zone research because these areas
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have not been extensively surveyed and are changing
rapidly. In fact, we have a little ground truth knowledge
as to the depth or bottom type in the southern Caspian
Sea. Also unfortunately, in this research, we had access
only to those satellite images with a resolution that
made it difficult to discriminate sea bottom types. On
the other hand, many coastal zone studies in the
southern Caspian Sea, such as those examining near-
shore fisheries, coastal erosion, water quality, or
recreation siting, are only concerned with areas of
shallow water and would benefit from easily updated
bathymetric estimates. In this research we calculated
bathymetry for a region in the north of Iran along the
southern coasts of the Sea within-Mazandaran
Province.

The procedure uses an algorithm for transforming
a single band of information into an index of water
depth that can then be calibrated to known depths.
The algorithm (Stoffle and Halmo, 1991) is one of a
family of algorithms that have been used to estimate
bathymetry (Lyzenga, 1985; Paredes and Spero, 1983).
These algorithms are based on the fact that radiance
is, to varying degrees, attenuated by the water column.
The degree of attenuation coefficient is a function of
wavelength, sea bottom types, and water column
properties. However, when there is only one band
available, meaning the shortest wavelength in the
visible spectrum (blue), its best to try and take full
advantage of its water penetrating properties. For these
reasons we use a Single Band Algorithm (SBA) which
assumes a constant attenuation coefficient and
requires the least amount of ancillary information. The
second procedure utilizes several bands of imagery
and Principal Components Analysis (PCA). This
method is analogous to a Multi-Band Algorithm that
accounts for varying attenuation coefficients for
different bottom types as it calculates water depth,
unlike the Single Band Algorithm (Van Hengel and
Spitzer, 1991).

MATERIALS & METHODS

The different stages of methodology have been
shown in Fig. 1. Data provided for this research
include: Visible blue, green and red bands of TM
Landsat Image (Data: 2010/06/04); Aboolean image in
which water has a value of one; A vector polygon of
the known deep-water area (greater than 100 m) in the
imagery; vector and value point file of the locations of
known depths. Time and space of the coincident pairs
of satellite and in situ data, called matchups, are the
basis for methodology. Therefore, 24 sampling points
were determined according to stratified random
sampling scheme across imagery (Fig 2.) of which 12
points (depth lesser than 40m) were used for
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bathymetric algorithms. Stratified random sampling
scheme is usually preferred since it combines the best
qualities of the unbiased character of the random
sampling scheme with an even geographic coverage
of the systematic scheme.The term stratified in stratified
random means that it is spatially stratified according
to a systematic division of the area into rectangular
regions. The Speedtech SM-5 Depthmate portable
sounder used for concurrent sonar depth
measurements. This unique pocket-sized depth
sounder is very accurate and of very high quality and
is useful for boating, fishing, scuba diving, coastal
survey, and scientific work. The position of locations
was recorded using Garmin 62S Global Positioning
System (GPS) receiver.

Clearly, without much knowledge of the area, it is
difficult to even separate the water areas from land in
the Landsat imagery. Therefore, to get a better idea of
the area, we combined information from the blue, green
and red bands to produce a natural color composite
image with original values and stretched saturation
points and 2.5 as the percent to be saturated (Fig. 2).

There are two very important procedures that must
be undertaken prior to bathymetric analysis. First the
image must be geometrically registered so that
corresponding pixels in the entire image refer to exactly
the same place on the ground. Resampling or rubber
sheeting is used with a set of control points to make
image sets match a base map. The second pre-
processing procedure involves the correction of the
imagery to remove random noise and stripping. Both
the single band algorithm and the PCA method are
sensitive to random noise and striping within the raw
imagery. Therefore, the image has been enhanced with
a low-pass (mean) filter.

Thealgorithm is as follows (Stoffle and Halmo, 1991):

Z= _—1In(\/ -Vs) +i(an0)
2K 2K

Where, Z = depth; V = observed signal radiance; Vs =
portion of signal resulting from scattering of radiation
in the atmosphere, water column and water surface;
K = water attenuation coefficient; Vo = sensitivity factor
consisting of contributions from solar irradiance at the
surface, the bottom reflectance, atmospheric
transmission, and sensor equipment.

It assumes that the actual observed radiance (V)
varies exponentially with water depth, after the portion
of the signal due to scattering (VS) is removed, radiance
is logarithmically transformed to a linear function of
depth. The result can then be put back into the
equation. The equation now takes the form of depth =
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slope (X) + constant. The line this equation describes
isthe best fit of a simple linear regression using known
variable. The slope of this line is related to the water

-1
attenuation coefficient such thatslope = ﬂ’ and the

- 1
constant value is given by constant =—(Invo) .

By first calculating the transformed radiance values
and then regressing them against control points of
known depth, all of the variables in the above equation
and estimate of the bathymetry are calculated.

The transformed radiance values were calculated
by taking the values from blue band, subtracting VS,
and then taking the natural log of the result. VS was
estimated from the spectral properties of the deepest
water in image; known to be at a depth greater than 100
m. A polygon file was provided that outlined the known
deep water area to estimate VS. Assuming that such
deep water should have virtually zero radiance values
in the blue band, any reflectance registered must be
due to scattering. Then, the average value of the pixels
that lied in known deep water was taken and one
standard deviation was subtracted.

This step is to actually run a linear regression
between the transformed blue band and the file of
known depth measurements provided through sea
sampling. There were 24 locations scattered across
imagery where depth is known (Fig. 2). This procedure
provided all the information needed to calibrate the
transformed radiance values to water depth using the
original algorithm. It then calibrated to actual water
depth by regression analysis.

This next section will demonstrate the second
method to estimate bathymetry: Principal Components
Analysis (PCA). Principal Components Analysis (PCA)
is related to Factor Analysis and can be used to
transform a set of image bands such that the new bands
(called components) are uncorrelated with one another
and are ordered in terms of the amount of image
variation they explain (Eastman, 2012).The input images
into the PCA are the TM imagery transformed, just as
in the algorithm method. While the algorithm method
assumes that the transformed blue band corresponds
directly to water depth, PCA assumes that the first
component from an analysis using all three bands
(transformed) will correspond to water depth. It is the
first component that can be calibrated to known water
depths. Because the PCA requires that input files be of
a byte/binary format, transformed blue, green and red
bands stretched to a value range of 0 - 255. Then, to
make analysis more accurate, the land areas were
masked for all three stretched images and the results

used as the input files for the PCA.The first component
was produced using forward T-Mode PCA showing
the sources of variation in the data set. PCA method
assumes that change in depth explains the most
variance and other factors, such as a changing bottom
type, will be secondary sources of variation (Khan, et
al., 1992). Values at the first component image for the
known site locations were extracted. Knowing the slope
and constant values from the regression, it was easy
to calibrate the transformed data to depth. Finally, the
first component was calibrated with known depths.
Briefly as mentioned, there are two main assumptions
in the presented methodology:

1) The Single Band Algorithm (SBA) assumes that the
transformed blue band corresponds directly to water
depth, while PCA assumes that the first component
using all three transformed bands corresponds to water
depth.

2) Assuming that known deep water (greater than 100
m) should have virtually zero radiance values in the
blue band, any reflectance registered must be due to
scattering.

RESULTS & DISCUSSION

Natural color composite (Fig. 2.) suffices to point
out a few coastal features of the image. Just beyond
the land is the sea, shown in various shades of blue.
The lighter the shade of blue, the shallower the water
is for estimating Vs, the mean value of known deep
water is 72.18962 for blue band, 25.51753 for green band
and 20.14141 for red band. The standard deviation is
1.0356, 0.7331 and 0.8294 respectively. Then, the
estimated value of VS is 71.15402, 24.78443 and
19.31201 respectively. The difference between the
original band and the transformed band is striking (Fig
3.&4).

After regressing the transformed blue band and
known depths, we got a slope = -89.336279, a constant
value =207.682598, and a correlation coefficient (r) = -
0.645405 (Fig. 5.). Then, plugging in the values of k
and VO, the map of water depth was produced (Fig. 6).
Regressing the first component of PCA and known
depths, found the slope = - 1.136398, the constant =
230.870964, and the correlation coefficient (r) = -
0.672394 (Fig 7.). Then, the map of water depth was
produced (Fig. 8).

Neither the composite image nor any of the original
bands could be used as an index to depth without
some further processing. Other factors such as sea-
bottom type and ocean surface scattering contribute
to variance in reflectance value and need to be
accounted for before any imagery can be considered
an index of water depth.While the composite image
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Table 1. Comparison of known and estimated depths in sampling stations

Site Number Known Depths (m) Single Band Algorithm Depths (m) PCA Depths (m)
1 51 21187259 21.8136082
2 14.5 329526062 35.4711456
3 28.5 274562817 28.6756268
4 39.3 36.3829334 42.0433426
5 55.6 571423111 68.2472000
6 78 85.6041641 87.2884369
7 1233 78.6175537 84.0651398
8 3 16.7989140 13.1144505
9 25.5 19.6530323 18.1056118

10 36 30.2919750 31.7064552
11 50.3 91.3507996 89.8670807
12 75 93.3568344 90.8340759
13 129.84 93.3568344 90.8340759
14 14 6.3055778 0.7950491
15 16.9 14.4409237 12.0341311
16 31.6 19.3552551 21.0993919
17 44.6 51.5325050 47.6814842
18 69.7 93.3568344 90.8340759
19 139.97 83.0925980 84.0615311
20 13 5.3559709 1.9841952
21 26.3 21.7871132 23.4779615
22 37.1 35.8685379 40.2580681
23 59.4 93.3568344 90.8340759
24 100.07 93.3568344 90.8340759
r =-0.645405 r=-0.672394

gives us a general picture of the area in question, it
cannot be used as an index of water depth. The change
in radiance in the composite, or in any of the three raw
bands, is due not just to changes in water depth but to
changes in sea bottom type, interference from wave
action and atmosphere, water quality, etc. Classification
of these images into categories representing depth
would be hard task waiting to be addressed in later
studies.

In transformed blue band, changes in the
reflectance values of off-shore pixels are seen that
appear to correspond to depth or perhaps to changes
in sea-bottom types. This variation was not as visible
in the non-transformed imagery.

Using single band method, for which we assume a
simple linear relationship between the transformed
radiances of the blue band and water depth, we needed
only to know the slope and constant values. However,
Calculating & and Vo may be necessary in other more
complex equations to calculate depth.However, while
this and other algorithms that account for bottom type
are dependent upon extensive ground truth
information, the PCA method produce a depth

dependent variable (independent of bottom type)
without ground truth data. The first component of PCA,
using the three TM bands of imagery, should
approximate relative water depth given the assumption
that depth explains most of the variance between two
or more bands of information.

Generally, it is difficult to tell which method
provides the best estimation of water depth. The Table
1 shows known depths against the estimated values
from single band algorithm and PCA.

According to the results, the PCA method appears
to match our control points slightly better than the
single band algorithm. Comparing estimations reveals
discrepancies in both methods. It is clear that both
methods can be used as rough estimates of bathymetry
and that these and similar methods might prove useful
in situations where little or no ground truth information
isavailable. However, itis vital that we look upon such
estimates as only the first step toward mapping
bathymetry for a given area.

Accurately rating either method would require
further ground truth information and analytical
algorithms instead of empirical algorithms.
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CONCLUSION

The first method used a single band algorithm and
assumed a constant water attenuation coefficient
throughout the blue band. To assume otherwise would
have required more ground truth knowledge about
bottom type than was not available. When such data
isavailable, there are a number of algorithms that might
be used to effectively isolate changes in depth from
changes in other factors. When not available, the single
band method works well as a rough estimate of
bathymetry as our analysis has shown. The second
method used Principal Components Analysis (PCA) in
an attempt to adjust for varying water attenuation
coefficients without additional ground truth data. This
procedure is based on the assumption that the first
component result of PCA, which explains most of the
variance in the data set, will be a depth-dependent
variable that is independent of other sources of
variation such as bottom type. After producing the
first component image and calibrating it to known
depths, we compared the results to the algorithm
method.

Apart from the presented methodology, nonlinear
optimization techniques and other machine learning
methods such as Artificial Neural Networks (ANNS)
provide an interesting alternative to examine complex
coastal waters and to handle multivariate data. Models
based on these methods determine the output values
(e.g., the bathymetric values) from input data (e.g., water
reflectance at various wavelengths) through nonlinear
multidimensional parametric functions. The
determination of the model parameters, as well as the
assessment of the model performance rely on a
reference data set and are suggested as an applicable
research topic in the southern Caspian Sea. In any
method we must be aware of the possibility for error at
each of the steps involved and continually question
our results. While the dynamic nature of the coast
makes precision in bathymetric estimation difficult (e.g.
tides, waves, lack of ground truth information), it also
makes such analyses essential if we are to have recent
and/or time series data for the coastal zone.
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