تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,981 |
تعداد دریافت فایل اصل مقاله | 97,217,763 |
تاثیر چهارده هفته فعالیت هوازی همزمان با مکملدهی رزوراترول روی میزان پروتئین SIRT1 و UCP-1 و PGC-1α در بافت کبد ی، چربی زیر پوستی و چربی احشایی موش های صحرایی نر | ||
نشریه علوم زیستی ورزشی | ||
مقاله 4، دوره 10، شماره 1، خرداد 1397، صفحه 39-58 اصل مقاله (1.17 M) | ||
نوع مقاله: مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I | ||
شناسه دیجیتال (DOI): 10.22059/jsb.2018.227987.1151 | ||
نویسندگان | ||
هادی زاهدی* 1؛ مقصود پیری2؛ مهدی هدایتی3 | ||
1دانشجوی دکتری بیوشیمی و متابولیسم ورزشی، دانشگاه آزاد تهران مرکز | ||
2گروه فیزیوبوژی، دانشکده تربیت بدنی دانشگاه آزاد تهران مرکزی | ||
3. دانشیار پژوهشکدۀ علوم غدد و متابولیسم، دانشگاه علوم پزشکی شهید بهشتی تهران –تهران-ایران | ||
چکیده | ||
هدف از تحقیق حاضر تعیین تاثیر مکملدهی رزوراترول و فعالیت هوازی بر میزان پروتئین SIRT-1 ، PGC-1αو UCP-1 بافت کبدی و بافت چربی شکمی-کشالهای و احشایی در موشهای صحرایی نر بود. در این پژوهش 28 سر موش صحرایی (میانگین وزن10 ±260 گرم، سن 8 هفته)، به طور تصادفی به چهار گروه؛ شاهد (C)، تمرین (T)، مکمل-تمرین (T-S) و مکمل (S) تقسیم شدند. گروههای تمرینی به مدت 14 هفته (هفته ای 5 جلسه، هر جلسه به مدت 45دقیقه) روی نوارگردان فعالیت کردند. گروه مکمل-تمرین روزانه 10میلیگرم به ازای هر کیلوگرم از وزن بدنشان مکمل رزوراترول دریافت کردند. جهت اندازهگیری پروتئین بافتی UCP-1، SIRT1، PGC-1α از روش الایزا (ساندویچ دوتایی) استفادهگردید. آزمون تحلیل واریانس یکطرفه برای تحلیل دادهها استفاده و سطح معنیداری (p≤0.05) در نظرگرفتهشد. میزان تغییرات پروتئین SIRT1 و PGC-1α در بافت کبدی و چربی سفید زیرپوستی و احشایی به ترتیب (P≤0.05) و (P≤0.001) مشاهده شد. پروتئین UCP-1 نیز در بافت های مورد اندازه گیری در گروه مکمل-تمرین افزایش معنی داری را پس از مصرف مکمل همراه با فعالیت هوازی از خود نشان داد (P≤0.001). با توجه به نتایج بدست آمده احتمالا مکملدهی موجب بهبود عملکرد بافت کبدی و تغییر فنوتیپ چربی سفید زیر پوستی به چربی بژ (بینابینی) میشود. | ||
کلیدواژهها | ||
تمرین هوازی؛ رزوراترول؛ UCP-1؛ SIRT1؛ PGC-1α | ||
مراجع | ||
1. Shimizu, M., Kubota, M., Tanaka, T. &Moriwaki, H. Nutraceutical Approach forPreventing Obesity Related Colorectal and Liver Carcinogenesis. Int. J. Mol. Sci. (2012) 13, 579–595.
2. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65: 1038-1048 [PMID: 26823198]
3. Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J, Darland C, Finch J, Gastaldelli A, Harrison S, Tio F, Cusi K. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012; 55: 1389-1397 [PMID: 22183689]
4. Misra VL, Khashab M, Chalasani N. Nonalcoholic fatty liver disease and cardiovascular risk. Curr Gastroenterol Rep 2009; 11: 50-55 [PMID: 19166659]
5. Sanyal AJ. NASH: A global health problem. Hepatol Res 2011; 41: 670-674 [PMID: 21711426]
6. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307: 384-387 [PMID: 15662004]
7. Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 2015; 347: 1253-1256 [PMID: 25721504]
8. Golabi P, Locklear CT, Austin P, Afdhal S, Byrns M, Gerber L, Younossi ZM. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: Systematic review. World J Gastroenterol 2016; 22: 6318-6327 [PMID: 27468220 DOI: 10.3748/wjg.v22.i27.6318]
9. Gariani K, Menzies KJ, Ryu D, Wegner CJ, Wang X, Ropelle ER, Moullan N, Zhang H, Perino A, Lemos V, Kim B, Park YK, Piersigilli A, Pham TX, Yang Y, Ku CS, Koo SI, Fomitchova A, Cantó C, Schoonjans K, Sauve AA, Lee JY, Auwerx J. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 2016; 63: 1190-1204 [PMID: 26404765]
10. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A. Resveratrol improves health and survival of mice on a highcalorie diet. Nature 2006; 444: 337–42.
11. Matos RS, Baroncini LAV, Précoma LB, Winter G, Lambach PH, Caron EY, Kaiber F & Précoma DB (2012). Resveratrol causes antiatherogenic effects in an animal model of atherosclerosis. Arq Bras Cardiol 98, 136–142.
12. Sin, T.K., Yung, B.Y., Siu, P.M.,. Modulation of SIRT1-Foxo1 signaling axis by resveratrol: Implications in skeletal muscle aging and insulin resistance. Cell. Physiol. Biochem. 2015, 35 (2), 541–552
13. Ling Li,1Ruping Pan,1Rong Li,1Bernd Niemann,2Anne-Cathleen Aurich,1Ying Chen,1and Susanne Rohrbach1,3 Mitochondrial Biogenesis and Peroxisome Proliferator–Activated Receptor-? Coactivator-1? (PGC-1?) Deacetylation by Physical Activity Intact Adipocytokine Signaling Is Required Diabetes 60:157–167, 2011
14. Wu J, Cohen P, Spiegelman B M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes and Development. 2013;27 (3):234-50.
15. Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., et al.. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. (2010), 285, 8340- 8351
16. Boström P, Wu J, Jedrychowski MP, KordeA,Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spie-gelman BM: A PGC-1Α-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 48 463–468.
17. Ikeda S, Kawamoto H, Kasaoka K, Hitomi Y, Kizaki T, Sankai Y, Ohno H, Haga S, Takemasa T. Muscle type-specific response of PGC-1 alpha and oxidative enzymes during voluntary wheel running in mouse skeletal muscle. Acta Physiol (Oxf) 2006;188:217–223
18. Um JH , Park SJ , Kang H , et al . AMP-activated protein kinase-deficient mice are resistant to the metabolic effect of resveratrol. Diabetes. 2010;59:554-563
19. Polyzos S A, Kountouras J, Shields K, Mantzoros C S. Irisin: A renaissance in
metabolism? Metabolism. 2013; 62(8): 1037-44.
20. Chang JS, Fernand V, Zhang Y, Shin J, Jun HJ, Joshi Y, Gettys TW. NT-PGC-1alpha protein is sufficient to link beta3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem. 2012; 287:9100–9111. [PubMed: 22282499]
21. Sluse FE, Jarmuszkiewicz W, Navet R, Douette P, Mathy G, Sluse-Goffart CM. Mitochondrial UCPs: new insights into regulation and impact. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2006;1757 (5-6):480-5.
22. Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 2015; 347: 1253-1256 [PMID: 25721504]
23. Alisi A, Manco M, Panera N, Nobili V. Association between type two diabetes and non-alcoholic fatty liver disease in youth. Ann Hepatol 2009; 8 Suppl 1: S44-S50 [PMID: 19381124]
24. Nobili V, Svegliati-Baroni G, Alisi A, Miele L, Valenti L, Vajro P. A 360-degree overview of paediatric NAFLD: recent insights. J Hepatol 2013; 58: 1218-1229 [PMID: 23238106]
25: Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic Peroxisome Proliferator-activated Receptor γ (PPARγ ) Activation of Epididymally Derived White Adipocyte Cultures Reveals a Population of Thermogenically Competent, UCP-1-containing Adipocytes Molecularly Distinct from Classic Brown Adipocytes. Journal of Biological Chemistry.2010; 285:7153–7164. [PubMed: 20028987]
26. Jun Hyun Jeong, Young Ran Lee, Hee Geun Park, and Wang Lok Lee The effects of either resveratrol or exercise on macrophage infiltration and switching from M1 to M2 in high fat diet mice J Exerc Nutrition Biochem. 2015 Jun; 19 (2): 65–72.
27. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ,Wende AR, Boudina S, Courtois M,Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF & Kelly DP. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol (2005) 3, e101.
28. Kristin I. Stanford,1,2Roeland J.W. Middelbeek,1,2,3and Laurie J. Goodyear , Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations Diabetes 2015;64:2361–2368 | DOI: 10.2337/db15-0227
29. Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J PhysiolEndocrinolMetab. 2005; 289:E608–616. [PubMed:15941787]
30. Li P, Zhu Z, Lu Y, Granneman JG. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-α. Am J of PhysiolEndocrinolMetab. 2005; 289:E617–E626. [PubMed: 15941786]
31. Chih-Hsueh Lin & Cheng-Chieh Lin & Wei-Jen Ting & Pei-Ying Pai&et al . Resveratrol enhanced FOXO3 phosphorylation via synergeticactivation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. Age (Dordr). 2014;36 (5):9705
32. Pontus B, Jun W, Mark P J, Anisha K, Li Y, James C, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012; 463-81.
33. Lin, H., Lin, C., Ting, J., Pai, Y., Kuo, H., Ho, T.J., Kuo, W., Chang, C.H., Huang, C.Y., Lin, T.,. Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. Age (Dordr) 2014, 36 (5), 9705
34. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell (2006) 127, 1109–1122
35. Fatiha Nassir, Jamal A Ibdah: Sirtuins and nonalcoholic fatty liver disease; World J Gastroenterol 2016 December 14; 22(46): 10084-10092 December 14, 2016|Volume 22|Issue 46
36. Wu T, Liu YH, Fu YC, Liu XM, Zhou XH. Direct evidence of sirtuin downregulation in the liver of non-alcoholic fatty liver disease patients. Ann Clin Lab Sci 2014; 44: 410-418 [PMID: 25361925]
37. Andrade JM, Paraíso AF, de Oliveira MV, Martins AM, Neto JF, Guimarães AL, de Paula AM, Qureshi M, Santos SH. Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 2014; 30: 915-919 [PMID: 24985011]
38. Tobita T, Guzman-Lepe J, Takeishi K, Nakao T, Wang Y, Meng F, Deng CX, Collin de l’Hortet A, Soto-Gutierrez A. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids. PLoS One 2016; 11: e0149344 [PMID: 26890260]
39. Chachay VS, Macdonald GA, Martin JH, Whitehead JP, O’ Moore-Sullivan TM, Lee P, Franklin M, Klein K, Taylor PJ, Ferguson M, Coombes JS, Thomas GP, Cowin GJ, Kirkpatrick CM, Prins JB, Hickman IJ. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014; 12: 2092-2103.e1-6 [PMID: 24582567]
40. Smith JJ, Kenney RD, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, Song J, Razvadauskaite G, Lynch AV, Carney DP, Johnson RJ, Lavu S, Iffland A, Elliott PJ, Lambert PD, Elliston KO, Jirousek MR, Milne JC, Boss O. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst Biol 2009; 3: 31 [PMID: 19284563 DOI: 10.1186/1752-0509-3-31]
41. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450: 712-716 [PMID: 18046409]
42. Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J. Specific SIRT1 activation mimics low energy levels and protects against dietinduced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8: 347-358 [PMID: 19046567]
43. Baur, J.A., Biochemical effects of SIRT1 activators. Biochim.Biophys.Acta 2010, 1804(8), 1626–1634..
44. Lagouge M , Argmann C , Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by acti-vating SIRT1 and PGC-1alpha .Cell .2006 ; 127 : 1109 – 1122 .
45. Rivera, L., Moron, R., Zarzuelo, A. &Galisteo, M. Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem.Pharmacol. 2009.77, 1053–1063.
46. Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.K.,Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., Wright, S.M., Mills, K.D.,Bonni, A., Yankner, B.A., Scully, R., Prolla, T.A., Alt, F.W., Sinclair, D.A.,.SIRT1 redistribution on chromatin promotes genomic stability but alters geneexpression during aging. Cell 2008 135 (5), 907–918
47. Nemoto, S., Fergusson, M.M., and Finkel, T.. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 2005,280, 16456-16460.
48. Fortunato RS, Ignacio DL, Padron AS, Pecanha R, Marassi MP,Rosenthal D,Werneck-de-Castro JP & Carvalho DP.The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol (2008) 198, 347–353
49. Wang MY, Unger RH. Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone. Am J Physiol Endocrinol Metab 2005; 288: E216–21.
50. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 2006; 574: 41–53.
51. Ikeda S, Kawamoto H, Kasaoka K, Hitomi Y, Kizaki T, Sankai Y, Ohno H, Haga S, Takemasa T. Muscle type-specific response of PGC-1 alpha and oxidative enzymes during voluntary wheel running in mouse skeletal muscle. Acta Physiol (Oxf) 2006;188:217–223 | ||
آمار تعداد مشاهده مقاله: 810 تعداد دریافت فایل اصل مقاله: 1,112 |