تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,090,986 |
تعداد دریافت فایل اصل مقاله | 97,194,938 |
ارزیابی و مدلسازی جریان انرژی و اثرات زیستمحیطی تولید کلوچه با رویکرد ارزیابی چرخه زندگی | ||
مهندسی بیوسیستم ایران | ||
مقاله 9، دوره 49، شماره 2، تیر 1397، صفحه 249-259 اصل مقاله (525.24 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2017.238331.664969 | ||
نویسندگان | ||
مجید خانعلی* 1؛ اسداله اکرم2؛ مهدیه محمدنیا3؛ هما حسین زاده بندبافها4 | ||
1دانشگاه تهران | ||
2هیئت علمی دانشگاه تهران | ||
3گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
4گروه مهندسی ماشین های کشاورزی،دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران | ||
چکیده | ||
در این تحقیق، مصرف انرژی و انتشار آلایندههای زیستمحیطی تولید کلوچه در استان گیلان مورد بررسی قرار گرفت. دادههای لازم از طریق پرسشنامه و مصاحبه حضوری از 30 کارخانه تولید کلوچه جمعآوری شد. نتایج این پژوهش نشان داد که مقدار 50/30 مگاژول انرژی برای تولید هر کیلوگرم کلوچه مصرف شده است که بیشترین سهم انرژی مصرفی به گاز طبیعی با 09/17 مگاژول بر کیلوگرم اختصاص داشت. براساس نتایج ارزیابی چرخه زندگی، شاخص گرمایش جهانی برای تولید هر کیلوگرم کلوچه kg CO2 eq. 73/3 تعیین گردید که در حدود 51 درصد آن مربوط به احتراق گاز طبیعی جهت فرآیند پخت است. در نهایت، مدلسازی میزان عملکرد و اثرات زیستمحیطی براساس دو مدل شبکههای عصبی مصنوعی و سامانه استنتاج فازی- عصبی تطبیقی (انفیس) انجام شد. مقایسه نتایج نشان داد مدل انفیس چند لایه قادر است تا با دقت بیشتر و خطای کمتر عملکرد محصول را برآورد کند. | ||
کلیدواژهها | ||
ارزیابی چرخه زندگی؛ شاخص های زیست محیطی؛ کلوچه؛ مدل سازی؛ مصرف انرژی | ||
مراجع | ||
Abolshikhi, M. (2014). Study of life cycle of bread production - Case Study: Ray County, Tehran. M. Sc. Thesis. University of Tehran, Iran. (In Persian with English abstract). Andersson, K., & Ohlsson, T. (1999). Life cycle assessment of bread produced on different scales. The International Journal of Life Cycle Assessment, 4(1), 25-40. Banaeian, N., Zangeneh, M., & Omid, M. (2010). Energy use efficiency for walnut producers using data envelopment analysis (DEA). Australian Journal of Crop Science, 4(5), 359-362. Baum, A. W., Patzek, T., Bender, M., Renich, S., & Jackson, W. (2009). The visible, sustainable farm: A comprehensive energy analysis of a Midwestern farm. Critical reviews in plant sciences, 28(4), 218-239. Bimpeh, M., Djokoto, E., Doe, H., & Jequier, R. (2006). Life Cycle Assessment (LCA) of the Production of Homemade and Industrial Bread in Sweden. KTH, Life Cycle Assessment Course (1N1800). Braschkat, J., Patyk, A., Quirin, M., & Reinhardt, G. A. (2004). Life cycle assessment of bread production-a comparison of eight different scenarios. Proceedings from the 4th International Conference, 6-8 Oct., Bygholm, Denmark. pp. 7-16. Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy conversion and Management, 46(4), 655-666. Curran, M. A., Mann, M., & Norris, G. (2005). The international workshop on electricity data for life cycle inventories. Journal of Cleaner Production, 13(8), 853-862. Ekici, B. B., & Aksoy, U. T. (2011). Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications, 38(5), 5352-5358. Erdal, G., Esengün, K., Erdal, H., & Gündüz, O. (2007). Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32(1), 35-41. Espinoza-Orias, N., Stichnothe, H., & Azapagic, A. (2011). The carbon footprint of bread. The International Journal of Life Cycle Assessment, 16(4), 351-365. Geerken, T.H., Scholliers, D., De Vooght, C., Spirinckx, V., Van Holderbeke, M., Vercalsteren, A. (2006). Analysis of the 4 Cases 1/5. Case Study: Bread, Sustainability Developments of Product Systems, 1800-2000. The Belgian Science Policy. pp. 29-43. Hosseinzadeh‐Bandbafha, H., Nabavi‐Pelesaraei, A., & Shamshirband, S. (2017). Investigations of energy consumption and greenhouse gas emissions of fattening farms using artificial intelligence methods. Environmental Progress & Sustainable Energy. http:// DOI: 1002/10/ep.12604. ISO. (2006). Environmental Management- Life Cycle Assessment- Principles and Framework- ISO,14040. Geneva, Switzerland. Karakaya, A., & Özilgen, M. (2011). Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes. Energy, 36(8), 5101-5110. Khanali, M., Mobli, H., & Hosseinzadeh-Bandbafha, H. (2017). Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environmental Science and Pollution Research, 1-17. Khanna, T. (1990). Foundations of neural networks. Reading: Addison Wesley. Kitani, O. (1999). CIGR handbook of agricultural engineering. Energy and biomass engineering, ASAE Publications, St Joseph, MI. Kulak, M., Nemecek, T., Frossard, E., Chable, V., & Gaillard, G. (2015). Life cycle assessment of bread from several alternative food networks in Europe. Journal of Cleaner Production, 90, 104-113. Mousazadeh, H., Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., & Sharifi, A. (2011). Life-cycle assessment of a Solar Assist Plug-in Hybrid electric Tractor (SAPHT) in comparison with a conventional tractor. Energy conversion and Management, 52(3), 1700-1710. Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Mobtaker, H. G. (2014). Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311-317. Namdari, M. (2015). Optimization of sugar beet production using colonial competition algorithm and life cycle assessment of sugar production. Ph. D. Thesis. University of Tehran, Iran. (In Persian with English abstract). Notarnicola, B., Tassielli, G., Renzulli, P. A., & Monforti, F. (2017). Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (Life Cycle Assessment) approach. Journal of Cleaner Production, 140, 455-469. Omid, M., Akram, A., & Golmohammadi, A. (2011). Modeling thermal conductivity of Iranian flat bread using artificial neural networks. International journal of food properties, 14(4), 708-720. Rahman, M. M., & Bala, B. K. (2010). Modelling of jute production using artificial neural networks. Biosystems Engineering, 105(3), 350-356. Rezaei, E., Karami, A., Yousefi, T., & Mahmoudinezhad, S. (2012). Modeling the free convection heat transfer in a partitioned cavity using ANFIS. International Communications in Heat and Mass Transfer, 39(3), 470-475. Sablani, S. S., Baik, O. D., & Marcotte, M. (2002). Neural networks for predicting thermal conductivity of bakery products. Journal of Food Engineering, 52(3), 299-304. Sefeedpari, P., Rafiee, S., Akram, A., Chau, K. W., & Pishgar-Komleh, S. H. (2016). Prophesying egg production based on energy consumption using multi-layered adaptive neural fuzzy inference system approach. Computers and electronics in agriculture, 131, 10-19.
| ||
آمار تعداد مشاهده مقاله: 629 تعداد دریافت فایل اصل مقاله: 1,197 |