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A B S T R A C T 

 

Due to uncertain nature of grade in ore deposits, considering uncertainty is inevitable in geological modeling of resources and mine planning. 
In other words, uncertainty in grade of mineralized materials is one of the most significant parameters that need attention in mine planning. 
In this paper, a comparative procedure utilizing Sequential Gaussian Simulation (SGS) and traditional Ordinary Kriging (OK) was applied in 
an iron ore mine, and the influence of ore grade uncertainty in mine planning was investigated. It was observed that the grade distribution 
resulted from the SGS is almost identical to that of the real exploration data as compared to the OK method. In addition, uncertainties 
including ore grade of deposit would significantly affect the technical and financial aspects of the plans. The comparison shows that the 
simulation-based ultimate pits exhibit less risk in deviating from quantity and quality targets than the traditional approaches based on a single 
orebody model obtained by the OK method. Using the SGS method, there was an increase in the value of the net present value of mine plans. 
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1. Introduction 

Open pit mining is an extractive activity prepared for the purpose of 
exploitation of economically valuable minerals or materials from the 
earth as the largest source of metals and minerals. Ultimate pit limit 
determination is the most important part of mine planning that defines 
the limits of the ore deposit up to which it is economically feasible to 
mine [1]. It establishes the tonnages of mineable reserves, ore and waste 
and the location of other surface facilities such as ore stockpiles and 
waste dumps [2]. Open pit mine planning is determining the parts of a 
deposit to be mined annually to maximize the total net present value 
(NPV) of the mining project [1]. Optimizing the production scheduling 
is a process that deals with the management of cash flows in the order 
of hundreds of millions of dollars and is heavily impacted by uncertainty 
in the ore and waste forecasted to be produced from a pit in both 
valuations and operation [3]. Uncertainty about the spatial distribution 
of ore grade can cause deviations from production targets [4, 5]. This is 
largely due to the propagation of errors in understanding the orebodies 
throughout the chain of mining [6]. 

In traditional approaches, an orebody model containing the deposit 
features such as ore grades was used for mine planning. The main 
drawback of estimation techniques is that they are unable to reproduce 
the in-situ variability of the deposit grades as inferred from the available 
data [6]. The Uncertainty that caused by the single estimated value of a 
block cannot represent the possible in situ grade variations between the 
sampled points [1]. Geostatistical estimation methods, such as Kriging, 
have long been used to model the spatial distribution of grades of 
interest within the mining blocks representing a deposit. In the 
conventional Kriging grade modeling, undesirable underestimating 
and/or overestimating due to smoothing effect may occur. Ordinary 
Kriging, one of the most reliable local estimation methods, 
correspondingly suffers from the smoothing effect because of simply the 
averaging nature of the Kriging algorithm. Kriging estimates do not 

reproduce the sample histogram because of reduced variance of the 
smoothing effect. In the OK estimation process, low values are 
overestimated and high values are underestimated [7]. To overcome the 
drawbacks of the conventional method and especially to consider the 
uncertainty during an ore grade estimation, some methods such as the 
conditional simulation may be useful. The conditional simulation 
technique uses geostatistical parameters to construct the number of 
grade distribution realizations with equal probability [8].  

The significance of the ore grade uncertainty in open-pit mining has 
received significant attention in recent years and it is well acknowledged 
in the literature. Initially, Ravenscroft [9] discussed the risk analysis in 
mine planning based on the orebody realizations. In addition, 
conditional simulation is used to integrate the grade uncertainty in 
various related aspects of open pit mining such as mine planning [10, 
11]. Dimitrakopoulos and Ramazan [12] suggested a methodology that 
was based on the probabilities of ore grades being above the cutoffs. To 
calculate the mentioned probabilities, they used a simulation method to 
make realizations of the orebody. Godoy and Dimitrakopoulos [13] 
generated the production schedules for all realizations of the orebody 
and then combined the mining sequences in order to produce a single 
schedule. Ramazan and Dimitrakopoulos [14] as well as Menabde and 
Froyland [15] used the simulated orebodies to calculate the extraction 
probability of each block in a given period. Dimitrakopoulos et al. [16] 
applied the conditional simulation and showed a remarkable deviation 
from the project targets that may cause in planning with a single ore 
body model. Dimitrakopoulos et al. [17] proposed a new approach in 
which different deposit simulations were compared, and the best one 
was selected. They used conditional simulations to obtain the candidate 
plans based on several orebody models. Ramazan and Dimitrakopoulos 
[18] engaged the integrated conditional simulation and stochastic 
integer programming for the NPV maximization. Furthermore, Whittle 
and Bozorgebrahimi [19] used the conditional simulations to generate 
the so-called Hybrid Pits. Godoy and Dimitrakopoulos [20] presented a 
set of procedures that would enable mine-planning engineers to carry 
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out a series of analyses, which could be used to evaluate the sensitivity 
of pit designs to the grade uncertainty. Dimitrakopoulos [6] proposed a 
new mine planning paradigm employing the sequential simulation 
approach to simulate pertinent attributes of mineral deposits. An 
extended mathematical framework was provided that allowed direct 
integration of orebody uncertainty to mine design, production planning, 
and valuation of mining projects and operations. Goodfellow and 
Dimitrakopoulos [21] used geological simulations with the simulated 
annealing algorithm to modify an initial design to minimize the 
variability of the material that is sent to each destination. Gholamnejad 
and Moosavi [22] incorporates the geological uncertainty within the 
orebody that was developed with a new binary integer-programming 
model for long-term production scheduling. Ramazan and 
Dimitrakopoulos [1] developed and applied a new stochastic integer-
programming model to a gold deposit in Australia. They used multiple 
conditionally simulated orebody models for optimizing the annual 
production schedules in open pit mines. Other studies in the literature 
are regarding the application of conditional simulation [4, 23-25]. 

In this paper, in order to demonstrate the impact of the ore grade 
uncertainty and the relative effects on planning results in iron ore mines, 
a case study of the Rezvan iron ore mine was provided in the paper. 
Therefore, a geological block model was constructed for the Rezvan iron 
ore mine and was implemented in the geostatistical analysis. Thereafter, 
considering economic block model, the open pit parameters including 
average grade, mineable ore, waste tonnage, and net present value 
(NPV) were determined for both SGS and OK methods. In this way, this 
paper quantified the ore grade uncertainty in ultimate pit determination 
and mine planning. Moreover, the advantages of utilizing SGS method 
over the conventional OK method in grade estimation and mine 
planning in uncertain condition were investigated in iron ore mines. 

2. SGS background 

A set of equally probable models of the deposit can be used as an 
input for an optimization mine design. The models present the actual 
and unknown spatial distribution of grades [6]. SGS is a variogram-
based simulation procedure and a special case that takes advantage of 
convenient properties of Gaussian random functions [26]. SGS is a 
widely used algorithm for modeling reservoir properties. Conditional 
simulations of orebodies utilizing SGS method are identified as a 
standard tool to model this kind of uncertainty [4, 5, 10, 24]. Unlike the 
Kriging method, conditional simulation generates the grade models that 
do not suffer from the smoothing effect, and therefore, can be utilized 
for investigating the intrinsic uncertainty related to the estimated ore 
grades. The SGS algorithm uses the sequential simulation formalism to 
simulate a Gaussian random function. Let Y(u) be a multivariate 
Gaussian random function with a zero mean value, unit variance, and a 
given variogram model γ(h). Realizations of Y(u) can be generated by 
the following algorithm [26]: 

1. Define a random path visiting each node of the grid 
2. for each node u along the path do 
3. Get the conditioning data consisting of neighboring original 

hard data (n) and previously simulated values 
4. Estimate the local conditional cumulative distribution 

function (ccdf) as a Gaussian distribution with mean given 
by kriging and variance by the kriging variance 

5. Draw a value from that Gaussian ccdf and add the simulated 
value to the dataset 

6. end for 
7. Repeat for another realization 

3. Case study 

The Rezvan iron ore deposit located in a mountainous region is 
situated 75 km north of Bandar Abbas, in the Hormozgan Province of 
Iran, between 56°07′E longitude and 27°40′N latitude with an average 
altitude of 1,000 m above the sea level. This region has a dry climate with 

moderate to warm temperature. In this paper, part of the deposit that 
has sufficient exploration data was considered as the study area.  

3.1. Data preparation  

The data used in geostatistical modeling were obtained from 125 
vertical exploration boreholes with azimuths of 0–355° and dips of 70–
90° drilled over the mining area shown in Fig. 1. The holes were drilled 
in a semi-regular pattern in a 550 meters (E–W) by 1200 meters (N–S) 
area with about 50 meters spacing between the adjacent drill holes. The 
information includes 3483 powder samples. The total length of the drill 
holes is 6966 meters. 

 
Fig. 1. Spatial locations of boreholes samples 

(“x” and “y” directions indicate Easting and Northing respectively). 

3.2. Statistical analysis of input data 

In order to start the geostatistical analysis, it is necessary to perform 
a preliminary statistical analysis including compositing, recognizing the 
outlier data, finding out the trends, and if necessary, conversion of 
abnormal to normal distributions. The Dorfel test was performed to 
distinguish the outlier data, which showed no outliers in the input data. 
Moreover, no specific trend for the grade was distinguished. Before 
calculating the variogram, it needs to examine both the spatial 
distribution of sampling sites and the cumulative distribution of the 
measurements to assess any need to modify the original data [28]. Based 
on Fig. 1, it seems that the boreholes are not located on a regular grid. 
To avoid the effects of preferential sampling and further biased results 
of the predictive models, the data were de-clustered and the output file 
used to transform the data into a normal distribution, for input to 
variogram analysis, OK and SGS process. The frequency distribution of 
grade of samples was checked for evaluation of Gaussian behavior. Fig. 
2 shows the histogram of samples grade and statistical parameters of the 
distributions are given in Table 1.  Fig. 2 showed that the data did not 
exactly possess a Gaussian distribution. Therefore, the ore grade 
distribution in this work was transformed into normal scores by 
targeting a Gaussian distribution with mean 0 and variance 1. However, 
the values of the attributes were transformed back to the original space 
during the simulations by targeting the original distribution. 

3.3. Spatial correlation analyses using variograms 

To find out a probable spatial coherence in the data, the variograms 
were modeled on the normal-score data. To produce a 3D variogram, 2 
meters length of the composite was uniformly applied. The Stanford 
University Geostatistical Modeling Software (SGeMS) was used for 



 M. M. Tahernejad et al. / Int. J. Min. & Geo-Eng. (IJMGE), 52-1 (2018) 53-60 55 

 

spatial correlation analyses. SGeMS implements several geostatistics 
algorithms for modeling of the phenomenon that exhibit the space 
distributions [26]. Variogram analysis, which allows for examination of 
whether the data are correlated with distance, was applied on the ore 
grade. If a spatial correlation emerges in the dataset, directional 
variograms should start from low values and increase up to the variance 
of the sample data. The knowledge of spatial correlations and ranges 
over which such correlations are observed, along with the knowledge of 
the mean of the data, are also taken into consideration when estimating 
the spatial distribution of parameters and their uncertainty [29]. The 
semivariogram, γ(h), measures the average dissimilarity between two 
regionalized variable; for example between the values of a parameter (x) 
at location u and location u+h. Assuming stationarity, the 
semivariogram γ(Z(u), Z(u+h)) depends on a lag vector h: γ(h). Thus, 
the experimental semivariogram is computed by [26]: 
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 

    
 
 

hN

2
huZuZ
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Fig. 2. Ore grade frequency distribution and the probability of samples data. 

Table 1. Statistical parameters of the samples data. 

No. of 

samples 

Average grade 

(%) 

Std 

(%) 

Min 

(%) 

Max 

(%) 

Kurtosis Skewness 

3483 44.97 10.31 15.01 64.98 0.32 -0.88 

In this equation, z(u) is the value of the parameter at location u and 
N(h) is the number of data pairs separated by vector h. Trying various 
lag distance base on borehole collar spacing, it was found that a lag of 
30 meters gives the best fit for spherical model applicable. Fig. 3 
illustrates four selected directional experimental variograms of normal 
scores of samples data. Observing the obtained variograms, an 
anisotropy was detected. Specifications of the spherical models are given 
in Table 2. 

In this section, the cross-validation method was used to evaluate the 
validation of the fitted variogram models. Fig. 4 represents the 
correlation plot of actual and estimated values in the cross-validation 
test. An acceptable match between the actual and estimated values with 
the correlation coefficient equal to 0.84 can be seen from this plot. Fig. 
5 shows the frequency distribution plot for the difference of actual and 
estimated values. It can be seen from the plot that the difference of 
actual and estimated values have almost normal distribution with a 
mean value equal to -0.173. It can be conclude from this plots that the 
variogram models are sufficiently valid in the estimation and simulation 
processes. The selected parameters for Kriging is mentioned in Table 3. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Directional variograms of normal scores of samples data ((a), (b) and (c) 
illustrate the horizontal direction at azimuth 0°, 45° and 90° respectively, and (d) 

at vertical direction). 
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Table 2. Specifications of the spherical models fitted on directional variograms. 

Model Nugget 
(%2) 

Sill 
(%2) 

Azimuth 
(degree) 

Dip 
(degree) 

Rang 
(m) 

Spherical 0.15 0.75 0 0 38 
 45 0 35 
 90 0 33 
 135 0 35 
 - 90 30 

 
Fig. 4. Correlation plot of actual and estimated values in the cross-validation test. 

 
Fig. 5.  Frequency distribution chart for the difference of actual and estimated 

values in the cross-validation test. 

Table 3. Optimum parameters for ordinary kriging. 

Range-1 

(m) 

Range-2 

(m) 

Range-3 

(m) 

Minimum number of 

points used for 

estimation 

Maximum number of 

points used for 

estimation 

38 33 30 48 5 

3.4. Geostatistical modeling and simulation 

3.4.1. Kriging implementation 

Kriging is a group of geostatistical techniques to interpolate the value 
of a random field at an unobserved location from the observations of its 
value at nearby locations. In Kriging, an estimated grade of a block 
within an orebody model generates a weighted average of the 
surrounded samples while the actual grade is unknown. Depending on 
the mean value specification, linear Kriging is divided into simple 
Kriging when the mean value of data is known, ordinary Kriging when 
the mean is unknown but constant, and universal Kriging when the 
mean is an unknown linear combination of the known functions. OK is 
widely used because it is statistically the best linear unbiased estimator 
[30]. In this paper, OK was performed to assign a grade to each block. 

Block dimensions of 2×2×2 meters were selected. It is small enough for 
comparing the statistics and spatial statistics of input data and the 
estimated results and is also large enough to not complicate the 
calculations. The OK method applied and the statistical parameters of 
ore grade distribution of estimated geological block model was obtained 
asError! Reference source not found.. As anticipated, due to the 
smoothing effect of Kriging, the standard deviation is decreased as 
compared to the samples data. 

 
Fig. 6. The comparison of statistical parameters of samples data (horizontal line) 

and all realizations. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Comparison between variograms of real data and realizations ((a) and (b) 
illustrate the horizontal direction at azimuth 0° and 90° respectively and (c) at 

vertical direction). 
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Ore grade histogram plot for input sample data and a random 
realization of SGS and for OK are presented in Fig. 8. It can be 
apperceived from these plots that due to the smoothing effect, the 
variance of the Kriging estimations is less than variance existed in the 
original data and simulated realizations. Comparison of the 

distributions from the realizations with the samples data shows that the 
histograms of individual realizations are very similar to the samples data 
and they have generated watchfully the cumulative probability 
distribution of the original data.

   
(a) (b) (c) 

Fig. 8. Ore grade histogram plot, (a) for input sample data, (b) one random realization of SGS and (c) for OK. 

In addition, to compare the statistical parameters, Q–Q plots were 
prepared for the estimated model and individual realizations versus the 
samples data (Fig. 9). The Q–Q plot analysis procedure in this work gave 

acceptable linear trends (located on the 45-degree line) between 
samples data and realizations. On the other hand, it can be seen that the 
OK method has a deviation from the mentioned trend line. 

  
(a)  (b)  

  
(c)  (d)  

Fig. 9. Q–Q plots of estimated ore grades against input data (a: kriging method, b,c,d: random realization from SGS. 
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3.5. Determining ultimate pit in case of OK and SGS 

The process of open pit mine planning begins with the identification 
of ultimate limit of open pit mine. The available quality and quantity of 
ore are then defined within the ultimate pit limit, and this supply of 
material is represented in terms of grade-tonnage curves [32]. In this 
step of the study, considering the parameters given in Table 4, the 
economic block values were prepared for each grade model created by 
the Kriging and SGS methods. Utilizing the Lerches and Grossman (LG) 
algorithm [30], an ultimate pit for each case was recognized (Fig. 10), 
and the parameters including ore tonnage, waste tonnage, average grade, 
and NPV were calculated for each pit (Fig. 11). 

 

Table 4. Required information in making an economic block model. 

Parameter Quantity Unit 
Ore Production 3 Million ton/ year 
Overall pit slope 50 Degree 
Density 0.038*Fe+1.86 ton/m3 

Cut-off Grade 15 % 
Recovery 90 % 
Dilution 5 % 
Ore mining cost 6 $/m3 

Waste mining cost 4 $/m3 
Crushing cost 1 $/ton 
Discount rate 15 % 
Product price 74 $/ton 

 
Fig. 10. A section plan of pit boundary of estimated-base (thick line) and simulation-based (narrow lines). 

 

 
Fig. 11. Pit parameters obtained from kriging method (horizontal bar) and conditional simulations (points).

Fig. 12 shows a comparison of grade-tonnage curves of the OK-based 
pit and the simulation-based pits. Given the grade-tonnage curves and 
the economic parameters such as the price of metal, the operating costs, 
recovery, and the discount rate, the cutoff grade identifies the amount 
of ore and waste within the ultimate pit limit. Table 5 presents the details 
of final pits for both the conventional OK and the SGS method. Table 5 
and Fig. 11 indicate that the pits resulted from OK gives more ore 
recovery as compared to the pit obtained from the SGS method. 
Nevertheless, a higher ore recovery cannot be considered merely as the 
economic index for selecting the optimum pit. In practice, the final 
decision is made according to the attainable NPV [5, 6, 34-37]. From 
NPV point of view, a large percentage of pits resulted from conditional 
simulation provide a higher NPV as compared to the OK-based pit. 

 
Fig. 12. Comparison of grade-tonnage curves of the OK-based pit (dashed curves) 

and simulation-based pits. 
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Table 5. Details of final pits of both the conventional kriging method and the 

conditional simulations. 

Parameter Kriging model 
SGS models 

Min Max Average Std 

Ore tonnage (Mt) 71.35 69.71 71.66 70.61 0.51 

Waste tonnage (Mt) 7.59 7.14 8.04 7.54 0.24 

Average grade (%) 45.31 44.86 46.14 45.72 0.30 

Static NPV (M$) 474.03 464.14 504.81 482.95 10.32 

4. Discussion and conclusions 

This paper quantifies the ore grade uncertainty in ultimate pit 
determination and mine planning. In this study, the advantages of 
utilizing the SGS method over the conventional OK method in grade 
estimation and mine planning in uncertain condition was investigated 
in the Rezvan iron ore mine. An estimated orebody of an iron ore 
deposit was created using the OK method. Furthermore, by 
implementing the SGS method, 50 realizations of orebody were 
generated, and 30 realizations that proved high conformity of the 
simulation grade distribution to input data were selected. Through 
utilizing the LG algorithm, the ultimate pit for each case was recognized 
and the parameters including ore tonnage, waste tonnage, average grade, 
and NPV, were calculated for each pit. The obtained results were 
analyzed and the impact of ore grade uncertainty in open pit mine 
planning was identified.  

From NPV point of view, a large percentage of pits based on SGS 
method, provide a higher NPV as compared to the OK-based pit. The 
OK-based pit shows more mineable ore and consequently lower 
stripping ratio as compared to the SGS-based pits. The results approved 
that using the OK-based planning can generate misleading outputs. This 
led to unrealistic optimism in mine planning and it could cause 
disappointing results. The smoothing effect generates unrealistic 
expectations of NPV and the stripping ratio in the mine’s design, along 
with ore production planning, pit limits and so on. 

It can be understood from the achieved results that the traditional 
Kriging methods that are based on a single orebody model assumed to 
be the actual deposit in the ground being mined, the SGS-based model 
accounts for the uncertainty in the mineral supply from the deposit. In 
this regard, it can be concluded that these simulation methods are useful 
in quantitatively evaluating the uncertainty of economic and operational 
consequences of ultimate pit design and planning of open pit mines. 
Distributions of the ore grade in each of realizations can be used to 
analyze the data statistically for variances and to evaluate the 
uncertainty associated with various values in a probabilistic sense. The 
simulation methods can be used to improve the mine design of a mining 
project by considering the spatial distributions of ore grade and their 
uncertainty. The SGS method is more suited for these applications 
compared to the OK method. Subsequently, the resulting data can 
probabilistically assess the uncertainty. Application of the SGS method 
leads to substantially lower potential deviation from the production 
targets, which is reduced risk. In fact, the results obtained from the 
analysis have shown that which method can be used to develop the 
mining strategies that are less risk in relation to grade uncertainty. It is 
considered that if the main objective is providing a correct assessment 
of confidence intervals or a correct modeling of spatial continuity, then 
the simulation is the appropriate tool. The case study shows that 
multiple equally probable models of a deposit enable mine planners to 
assess the sensitivity of pit design and long-term production scheduling 
to ore grade uncertainty, and enable mine planners to produce more 
realistic mine designs. 
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