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ABSTRACT: The only way to test the ability of concrete plants to produce high quality 

concrete is to test their final products. Also, the process of testing and controlling concrete 

quality is time consuming and expensive. In this regard, having a quick, cheap and efficient 

way to predict the readiness of concrete plants to produce high quality concrete is very 

valuable. In this paper, a probabilistic multi-attribute algorithm has been developed to 

address this problem. In this algorithm, the goal is to evaluate readiness of concrete plants to 

produce high quality concrete based on the error rate of concrete compressive strength. Using 

past information and data mining techniques, this algorithm predicts the readiness level of 

concrete plants by similarity of their production factors to past information. Readiness 

alternatives for plants are ranked using data mining techniques for order preference based on 

their production factors (PF) and by evaluating the similarity/difference of each PF to past 

information. A case study of 20 concrete plants is used to illustrate the capability of the new 

algorithm; with results showing that the algorithm generated nondominated solutions can 

assist plant managers to set efficient production plan, a task both difficult, cost and time-

consuming using current methods. In the case study, lab test totally confirm the algorithm 

outcomes thus it has been successfully verified. 

 

Keywords: Algorithm, Concrete Plant, Data Mining, Error Rate of Concrete Compressive 

Strength. 

 

 

INTRODUCTION 

 

Concrete is one of the most popular building 

materials owing to its ability to customize its 

properties for different applications 

(Anderson, et al., 2003). As important 

structural constituent in civic construction, 

concrete finds wide use nowadays (Yu, et al., 

2014). The development of the construction 

industry has greatly influenced the concrete 

industry in some developing countries, 

especially in Iran, where the demand for 

concrete has grown at an increasing rate in 

recent years (Shekarchizadeh et al., 2014). 

Although quality has had an important role to 

play in improving the industry in developed 

countries, producing high quality concrete for 

municipal usage is becoming a challenge to 

the producer in developing countries (Sarkar 

et al., 2010), concrete is a product which also 
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should satisfy the requirements of the 

customer or consumer (Sarkar et al., 2017). 

There are several factors for this including 

incomplete infrastructure, defective 

equipment, low quality material, and lack of 

skilled workers (Defeo et al., 2010; Kazaz et 

al., 2004). These factors can be categorized 

into two groups of structured and 

unstructured factors. The structured factors 

(such as the quality and consumption of raw 

materials, mix design of concrete) have been 

well studied (e.g. Lee et al., 2009) and the 

relationship between the influencing factors 

and the analysis indicators has been described 

by fixed rules. Many errors can occur 

throughout the production of concrete and 

aggregate during material ordering, shipping, 

receiving, stockpiling, storage, handling, 

batching, and concrete delivery that can lower 

strength (Richardson et al., 2014). For the 

unstructured factors (like the stuff skill, 

control precision and production condition), 

there is no clear relationship between the 

influencing factors and the analysis 

indicators. However, the unstructured factors 

could also lead to quality fluctuation. 

In this paper, in order to compensate the 

drawbacks of traditional models, a 

probabilistic multi-attribute algorithm has 

been developed. In this algorithm, the goal is 

to evaluate the readiness of concrete plants to 

produce high quality concrete based on the 

error rate of concrete compressive strength. 

Using past information and data mining 

techniques, this algorithm predicts the 

readiness level of concrete plants by 

similarity of their production factors to past 

information. 

 

METHODOLOGY 

 

Because of the fact that there are considerable 

large sets of data about concrete plants 

available from past research and surveys, 

using past experiences as a base to predict the 

quality of future products is a very effective 

and efficient way. This paper uses data 

mining techniques to explore collected data.  

Data mining is the process of discovering 

actionable information from large sets of data 

(Rajagopalan et al., 2002). Data mining uses 

mathematical analysis to derive patterns and 

trends that exist in data. Typically, these 

patterns cannot be discovered by traditional 

data exploration because the relationships are 

too complex or because there is too much 

data. These patterns and trends can be 

collected and defined as a data mining model 

(Fayyad et al., 1996). The objective of data 

mining is to identify valid novel, potentially 

useful, and understandable correlations and 

patterns in existing data (Chung et al., 1999). 

Mining models can be applied to specific 

scenarios such as: forecasting, risk and 

probability, recommendations and finding 

sequences. Building a mining model is part of 

a larger process that includes everything from 

asking questions about the data and creating 

a model to answer those questions and to 

deploying the model into a working 

environment (Han et al., 2011). 

The first step in the data mining process is 

to clearly define the problem and consider 

ways that data can be utilized to provide an 

answer to the problem. This step includes 

analyzing requirements, defining the scope of 

the problem, defining the metrics by which 

the model will be evaluated and defining 

specific objectives for the data mining 

project. The next step is to unite the data that 

was identified in the defining the problem 

step. The third step in the data mining process 

is to explore the prepared data. By exploring 

the data in light of your own understanding of 

the problem, it can be decided whether the 

dataset contains flawed data or not, and then 

a strategy for fixing the problems can be 

devised. The fourth step is to build the mining 

model or models. The knowledge that is 

gained in the exploring data step will be used 

to help define and create the models. Test of 

the model performance should be performed 
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before deploying the model into a production 

environment. Thus, the last step in the data 

mining process is to explore the mining 

models that have been built and validat the 

model. If the model fails, the process might 

have been returned to a previous step and 

redefine the problem or reinvestigate the data 

in the original dataset (Jackson, 2002). 

In this study, an algorithm has been 

developed in order to: first, build usable 

database from past information of concrete 

plants and the final product; and second, 

evaluating and predicting the readiness level 

of concrete plants based on similarity of their 

production factors to the data base. The step-

by-step description about the preparation of 

the usable data matrix and development of the 

algorithm is explained in the following 

section of the paper.  

 

ALGORITHM STEPS 

 

Probabilistic multi-attribute algorithm for 

predicting the readiness of concrete plants to 

produce high quality concrete consists of 

following Parts.  

 

Step 1: Determining the Readiness 

Alternatives (Level) of Concrete Plants 

(RL) 

Compressive strength has been generally 

considered to be one of the most essential 

qualities of concrete (Yuan et al., 2014). 

Therefore, there are many studies devoted to 

develop models to predict and evaluate 

concrete compressive strength (e.g. Chen et 

al., 2010; Pham et al., 2015).  

Study of Yeh (1998) aimed to demonstrate 

the possibilities of adapting artificial neural 

networks (ANN) to predict the compressive 

strength of high-performance concrete. This 

study led to the conclusion that a strength 

model based on ANN is more accurate than a 

model based on regression analysis (Yeh, 

1998). Multi-layer feed-forward neural 

networks (MFNNs) was proposed to predict 

28-day compressive strength of concrete 

based on the inadequacy of present methods 

dealing with multiple variable and nonlinear 

problems (Hong-Guang et al., 2000). 

Different forms of artificial neural networks 

have been developed and used to predict 

compressive strength of concrete in the past. 

Lee (2003) purposed an artificial neural 

networks (ANN) model that can learn 

cylinder test results as training patterns. The 

purpose of this model is to provide in-place 

strength information of the concrete to 

facilitate concrete form removal and 

scheduling for construction (Lee, 2003). 

Beside ANN models, fuzzy logic models 

have been used to predict compressive 

strength of concrete. In a study, fuzzy logic 

models for predicting the 7, 28 and 90 days’ 

compressive strength of concretes containing 

high-lime and low-lime fly ashes have been 

developed. The data used in this models were 

arranged in a format of nine input parameters 

that cover the day, portland cement, water, 

sand, crushed stone I (4-8 mm), crushed stone 

II (8-16 mm), high range water reducing 

agent replacement ratio, fly ash replacement 

ratio and CaO, and an output parameter which 

was compressive strength of concrete (Topçu 

et al., 2008). 

Although these models have many cost 

and time saving advantageous, but having a 

compressive strength prediction neither is a 

reliable measurement of concrete quality nor 

test the ability of concrete plants to produce 

high quality concrete. Therefore, the error 

rate of concrete compressive strength has 

been identified as the most important quality 

indicator in concrete industry (Yuan et al., 

2014). 

Based on the error rate of concrete 

compressive strength, readiness levels of 

concrete plants are divided into six groups 

(Table 1). 
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 Step 2: Determining Production Factors 

(PFi) 

There are many factors which have an 

effect on concrete plants. Although, there is 

no scientific way to precisely determine all 

the effective factors in production of 

concrete, but literature has introduced some 

factor more effective than others (Yuan et al., 

2014, Arıöz et al., 2007). Using past 

literatures in the field, 7 factors have been 

chosen as effective to the ability of concrete 

plants to increase the quality of their 

products. Table 2 shows production factors 

which have been used in the algorithm. The 

PFs chosen to be used in the algorithm have 

no correlation to each other so each factor is 

related to the readiness level of concrete plant 

disregard to other factors. 

 

Step 3: Determining the Quality Level of 

Production Factors (LPFi) 

Each factor has a level of quality 

exclusively that has a direct effect on the 

readiness level of the concrete plant. To 

determine the readiness of the concrete plant 

all of the PFs should be rated. For this 

purpose, a linguistic scale has been defined 

and set as a reference (Table 3). According to 

this scale the factor with the highest level of 

quality is scored 9, while the factor with the 

lowest level of quality score is 1. Other 

factors in this extreme are scored 

subsequently from 1 to 9.  

 

Step 4: Collecting Past Information and 

Forming Database (PIj) 

Information collection for data matrix is 

the next step. In this step a database is built 

based on information collected from past 

productions of concrete plants. For each PIj in 

the database, the readiness level of concrete 

plant and level of every factor should be 

collected. 

Table 4 demonstrates a sample database 

for the algorithm. In such table the rows are 

past information of concrete plants (PIj) and 

the columns demonstrate scores for each PF. 

The last column shows the readiness level of 

concrete plant, which were calculated based 

on testing the error rate of concrete 

compressive strength in a certified lab. 

 

Step 5: Determining the Weights of 

Production Factors (WPFi) 

The importance of factors in evaluating the 

readiness level of concrete plants is not the 

same. The weights of production factors are 

the reflection their importance. These weights 

should be determined based on judgment of 

professionals in the field of concrete 

production. The scale for the weighting 

process is listed in Table 5. 
 

Table 1. Readiness alternatives of concrete plants 

RL Error Rate of Concrete Compressive Strength 

A Less than 10 percent 

B Between 20-10 percent 

C Between 30-20 percent 

D Between 40-30 percent 

E Between 50-40 percent 

F More than 50 percent 

 

Table 2. Concrete plant production factors 

Factor Number Factor Statement 

1 Raw materials 

2 Mix-design process 

3 QC and testing 

4 Tools and equipment 

5 Equipment calibration 

6 Workmanship 

7 Staff skills 



Civil Engineering Infrastructures Journal, 51(1): 1 – 16, June 2018 

 

5 
 

Table 3. Levels and scores of production factors 

Score Quality Level 

1 Poor 

2 Very low 

3 Low 

4 Not Good 

5 Median 

6 Good 

7 High 

8 Very High 

9 Perfect 

 
Table 4. Sample database for the algorithm 

Past Information PF1 PF2 PF3 PF4 PF5 PF6 PF7 Readiness Level 

1 8 4 2 7 9 6 7 A 

2 3 2 2 4 6 4 9 B 

3 3 3 1 8 9 5 9 B 

4 4 3 1 8 9 2 4 E 

5 4 2 1 6 5 3 7 D 

6 5 3 9 8 7 2 4 C 

7 5 3 6 7 8 3 2 F 

8 6 4 2 8 7 7 3 C 

 
Table 5. Production factors weighs 

Weight Description (Importance) 

1 Very Low 

2 Low 

3 Moderate 

4 High 

5  Very High 

 

Step 6: Determining the Effectiveness of 

Production Factors (EPFi-j) 

Each Production factor in each concrete 

plant has its individual effect on the final 

readiness level of the plant. The difference in 

readiness levels of plants should be 

investigated in the quality level of their 

production factors. For instance, if two plants 

reach different readiness levels and have only 

two PFs with different quality levels, it is 

logical to assume that those factors are 

effective in differentiation of readiness levels 

of the plants. 

In order to determine the effectiveness of 

each PF in each PIj in database, the quality 

level of that factor should be compared to the 

quality level of the same factor in another 

plant with different readiness level.  

The difference between quality levels of 

the production factors means that they can be 

effective on difference of the readiness levels 

of the concrete plants (Eq. (1)). Table 6 

depicts how effective the factors of past 

information in the sample database are. 
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None Effective

means of
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Table 6. Qualitative effectiveness evaluation of the sample data matrix 
  PIk 

PIj PFi 1 2 3 4 5 6 7 8 

1 

1 - E E E E E E E 

2 - E E E E E E NE 

3 - NE E E E E E NE 

4 - E E E E E NE E 

5 - E NE NE E E E E 

6 - E E E E E E E 

7 - E E E NE E E E 

2 

1 E - - E E E E E 

2 E - - E NE E E E 

3 NE - - E E E E NE 

4 E - - E E E E E 

5 E - - E E E E E 

6 E - - E E E E E 

7 E - - E E E E E 

3 

1 E - - E E E E E 

2 E - - NE E NE NE E 

3 E - - NE NE E E E 

4 E - - NE E NE E NE 

5 NE - - NE E E E E 

6 E - - E E E E E 

7 E - - E E E E E 

4 

1 E E E - NE E E E 

2 E E NE - E NE NE E 

3 E E NE - NE E E E 

4 E E NE - E NE E NE 

5 NE E NE - E E E E 

6 E E E - E NE E E 

7 E E E - E NE E E 

5 

1 E E E NE - E E E 

2 E NE E E - E E E 

3 E E NE NE - E E E 

4 E E E E - E E E 

5 E E E E - E E E 

6 E E E E - E NE E 

7 NE E E E - E E E 

6 

1 E E E E E - NE - 

2 E E NE NE E - NE - 

3 E E E E E - E - 

4 E E NE NE E - E - 

5 E E E E E - E - 

6 E E E NE E - E - 

7 E E E NE E - E - 

7 

1 E E E E E NE - E 

2 E E NE NE E NE - E 

3 E E E E E E - E 

4 NE E E E E E - E 

5 E E E E E E - E 

6 E E E E NE E - E 

7 E E E E E E - E 

8 

1 E E E E E - E - 

2 NE E E E E - E - 

3 NE NE E E E - E - 

4 E E NE NE E - E - 

5 E E E E E - E - 

6 E E E E E - E - 

7 E E E E E - E - 
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Step 7: Determining the Effectiveness 

Probability of the Production Factors 

(EPPFi-j) 

A qualitative evaluation between factors 

of each two plants in the sample database was 

calculated in step 5. To develop a fully useful 

table of past information, a quantitative 

measure of the effectiveness of production 

factors for each jPI  is needed. To achieve 

such purpose the effectiveness probability of 

production factors should be calculate based 

on qualitative measurements of Step 6.  

To clarify Eq. )2(, the following lines 

describe the calculation of effectiveness 

probability of the production factors of the 

past experience 1 (EPPFi-1) in the sample data 

matrix. As it is depicted in Table 6, 1PI has 

different readiness level as other plants in the 

sample database. Thus, production factors of 

this plant should be compared to PFs of all the 

other plants in the sample database (Eq. (1)). 

As the result, first PF of the first plant is 

introduced as Effective in all of these 

compressions meaning that PF1-1 has 100% 

probability of being effective in determining 

the readiness level of the first plant in the 

sample database. Furthermore, PF2-1 is 

introduced as Effective in 6 of the 

compressions made, as the result, the 

effectiveness probability of the second 

production factor of 1PI  is 86% (6 : 7 = 0.86). 

Table 7 shows the final database with the 

effectiveness probability of all factors of all 

the sample data plants been calculated. 

 

Step 8: Introducing an Unrated Concrete 

Plant into the Algorithm 

The purpose of this algorithm is to 

calculate readiness level of a concrete plant to 

produce high quality concrete based on past 

information. After generating a complete 

database, in this step an unrated concrete 

plant is introduced to the algorithm in order 

to calculate its readiness level (e.g. Table 8). 

The only preparation needed by the algorithm 

in order to calculate the RL of the unrated 

plant is determining the quality level of its 

production factors. 

 

i-k

Total number of compresions made for PF  

= Total number of cases in the data matrix 

- number of cases with same RL as PI

Number of compresions in which; EPF  = "Effectiv
=

i k

k

i kEPPF





 

 


i-k

e"

Total number of compresions made for PF

 
(2) 

 
Table 7. Effectiveness probability of factors 

PI EPPF1-j EPPF2-j EPPF3-j EPPF4-j EPPF5-j EPPF6-j EPPF7-j RL 

1 100% 86% 71% 86% 71% 100% 86% A 

2 100% 83% 67% 100% 100% 100% 100% B 

3 100% 50% 67% 50% 67% 100% 100% B 

4 86% 57% 71% 57% 71% 86% 86% E 

5 86% 86% 71% 100% 100% 86% 86% D 

6 83% 50% 100% 67% 100% 83% 83% C 

7 86% 57% 100% 86% 100% 86% 100% F 

8 100% 83% 67% 67% 100% 100% 100% C 

 
Table 8. Information of a sample unrated plant 

  PF1 PF 2 PF 3 PF 4 PF 5 PF 6 PF 7 

Unrated Concrete Plant 4 5 2 9 8 7 4 
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Step 9: Evaluating Similarity between the 

Unrated Plant and Past Information 

Researchers have shown that past 

information really does help when complex 

decisions based on uncertain or confusing 

information have to be made (Mostafavi et 

al., 2010). Based on this concept, it can be 

interpreted that the readiness level of an 

unrated concrete plant is the same as the most 

similar past information.  

In order to evaluate similarity between the 

unrated concrete plant and a concrete plant 

from past information, the quality levels of 

their production factors should be compared. 

If a PF quality level in the unrated concrete 

plant is similar or higher than the same PF 

quality level of a plant from database, the 

influence of that PF in the readiness level of 

the both plants is assumed to be the same. In 

other hand, if a PF quality level in the unrated 

concrete plant is lower than the same PF 

quality level in a plant from database, that PF 

can have a negative effect on similarity of 

readiness level of the unrated plant and the 

plant from database. This evaluation should 

be done for every production factor in each 

concrete plant in the sample database. 

 

Step 10: Calculating Score of Similarity, 

Score of Difference, and Total Score for 

Past Information 

Based on the evaluation of similarity 

between the production factors of the unrated 

plant and past information, for every 

production factor in each plant in the sample 

database, scores of similarity, difference, and 

total score should be calculated (Eq. (3)). 

Score of similarity indicate the similarity 

between the quality level of PFs of the 

unrated plant and the past information. In 

other hand, score of difference indicate the 

difference between the quality level of PFs of 

the unrated plant and the past information. 

These scores provide quantitative 

measurements of similarity between the 

unrated plant and the plants in the sample 

database. Table 9 shows scores which have 

been calculated based on similarity of the 

sample unrated plant and each plant in the 

sample database. 

 

Step 11: Calculating Overall Scores for 

Readiness Levels 

Scores of similarity, difference and total 

has been calculated for each plant in the 

sample database.  

 

Unrated Plant

Unrated Plant

If

Score of Similarity for

Score of Difference for

If

j

i i j

i j i j i j i j i

i j i j

i i j

PI Data matrix

LPF LPF

PF SPF LPF EPPF WPF

PF DPF

LPF LPF

 

   

 

 

  

  

    


  

  


 Unrated Plant

7

1

Score of Similarity for 0

Score of Difference for

Score of Similarity for

Score of Difference for

i j i j

i j i j i i j i j i

j j i j

i

j

PF SPF

PF DPF LPF LPF EPPF WPF

PI SPI SPF

PI

 

    





  


      

  




7

1

Total Score for

j i j

i

j j j

DPI DPF

PI SPI DPI





 

  



 
(3) 
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The next step is calculating these scores 

for each alternative which are introduced in 

step 1. Overall scores for alternatives are 

calculated using the scores which were 

calculated for each plant in the sample 

database. The overall scores are the average 

of scores for plants with the same readiness 

level. As Table 10 shows, higher score for an 

alternative means that the unrated plant has 

the most similarity to the other plants with the 

readiness level. Thus, it can be expected that 

the unrated plant will have the same readiness 

level of producing high quality concrete. 

 

Step 12: Accounting for Users’ Attitude 

Users of this algorithm may choose 

between three kinds of attitudes toward the 

final result. This enhance productivity of the 

algorithm process by considering the 

alternatives’ ranking sensitivity to each user 

attitude and helps users place high degree of 

confidence on the outcomes of the algorithm. 

1- Choosing based on similarity: In this 

case the user only considers similarity 

between unrated plant and past information. 

2- Choosing based on difference: In this 

case the user only considers difference 

between unrated plant and past information. 

3- Choosing based on total score: In this 

case the user uses a combination of scores of 

similarity and difference.   

 

Step 13: Selecting the Readiness Level of 

the Unrated Plant 

In this step of the algorithm, the scores are 

ranked based on the user’s attitude and the 

alternative with the highest score is selected 

as the readiness level for the unrated plant. 

Steps 12–13 can be performed for different 

attitude scenarios by the user. 

 

VERIFICATION OF THE ALGORITHM 

(CASE STUDY) 

 

In order to verify the algorithm, it has been 

applied to a research about the quality of 

ready-mixed concrete plants in Isfahan 

province located in the middle part of Iran. 

This study was part of a national project 

conducted by Building and Housing Research 

Center. The aim of this study was to evaluate 

the current condition of ready-mixed concrete 

plants in the country and define best ways to 

improve the quality of concrete production in 

Iran. The field work of this project started 

from June 2013. 

 
Table 9. Calculated scores for each plant in the sample database based on their similarity to the unrated plant 

PI 
Scores 

RL 
Similarity Difference Total 

1 60.00 -24.71 35.29 A 

2 80.67 -10.00 70.67 B 

3 52.00 -13.33 38.67 B 

4 50.14 -14.29 35.86 E 

5 76.00 -5.14 70.86 D 

6 70.33 -24.33 46.00 C 

7 79.14 -15.43 63.71 F 

8 102.33 -8.00 94.33 C 

 
Table 10. Overall scores for the readiness level of the unrated plant 

RL 
Overall Scores 

Similarity Difference Total 

A 60.00 -24.71 35.29 

B 66.33 -11.67 54.67 

C 86.33 -16.17 70.17 

D 76.00 -5.14 70.86 

E 50.14 -14.29 35.86 

F 79.14 -15.43 63.71 
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Five major cities and more than 100 

concrete plants were planned to take part in 

this project. The project started from the city 

of Isfahan, one of the cities with the most 

production of concrete in Iran, and more than 

20 concrete plants were thoroughly examined 

in the first step in this city. Near to 150 factors 

which a concrete plant should consider to 

produce high quality concrete has been 

collected. These factors identified using 

national and international standards and 

codes about the maintenance of raw materials 

used in concrete, concrete mixture 

procedures, necessary tests before, during 

and after production of concrete, and other 

factors introduced in literature. Based on the 

collected factors, 18 sets of checklists were 

provided to gather information about the 

plants readiness to produce high quality 

concrete. The level of each PF has been 

calculated based on professionals’ lingual 

views. Also, the final product of each 

concrete plant has been tested in a verified lab 

and using the concept of the error rate of 

concrete compressive strength, readiness 

level of the plants has been calculated. The 

readiness levels of the evaluated plants and 

quality levels of their PFs are tabulated in 

Table 11. 

A survey among the professionals in the 

field of concrete technology was conducted 

by the authors in order to define the weights 

of production factors. Based on this survey, 

equipment calibration was considered to have 

very high importance. The reason was that 

using out-of-calibration equipment- such as: 

batching system and truck mixer- highly, 

more often affect the quality of the concrete 

in Iran and considered one of the major 

problems in the way of producing high 

quality concrete in the country. The following 

factors are considered to be highly important: 

“raw materials”, mix-design” and 

“workmanship”. On account of the fact that 

these factors are the main part of producing 

concrete, they are considered to be highly 

important. Other factors are considered to 

have moderate importance. Moreover, the 

user attitude in this case study has been set to 

“choosing based on total score”. 

 
Table 11. Information of the case study project 

Plant PF 1 PF 2 PF 3 PF 4 PF 5 PF 6 PF 7 RL 

1 8 4 2 7 9 6 7 A 

2 4 2 3 5 4 4 4 D 

3 2 4 3 6 5 3 4 E 

4 3 6 6 4 6 4 9 B 

5 3 4 2 7 6 2 4 E 

6 3 3 1 8 9 5 9 B 

7 4 3 1 8 9 2 4 E 

8 6 3 3 6 7 2 3 F 

9 4 3 7 6 7 4 4 C 

10 4 2 1 6 5 3 7 D 

11 3 2 1 6 7 2 4 F 

12 7 6 5 8 8 6 7 A 

13 5 3 9 8 7 2 4 C 

14 3 4 3 8 9 4 9 B 

15 8 4 5 7 9 6 7 A 

16 5 4 9 7 6 3 5 C 

17 5 3 6 7 8 3 2 B 

18 4 3 1 8 9 2 4 B 

19 5 3 6 7 8 3 2 D 

20 6 4 2 8 7 7 3 C 

 

  



Civil Engineering Infrastructures Journal, 51(1): 1 – 16, June 2018 

 

11 
 

Because the computational process of the 

algorithm is time consuming and arduous, the 

computerized program of the algorithm is 

generated using “Microsoft Visual Basic for 

Applications” for the users to take advantage 

of the algorithm results more easily. This 

program facilitates the analysis of different 

user attitude modes. Therefore, the user can 

compare different attitudes’ results. The user 

enters the input data in terms of lingual terms 

based on the collected information about the 

concrete plant characteristics through 

program interfaces. Then, based on the input 

data and through the database, similarity and 

difference between the input data and the 

database information are evaluated; then 

scores of similarity and difference and the 

total are calculated and the most fit readiness 

alternative will be obtained. The results 

include the readiness alternatives’ ranking, a 

compression between the current situation of 

the concrete plants and the best and the worth 

situations, and the ranking of which 

production factor has the most effect on the 

plant readiness to produce high quality 

concrete. 

To test validity of the algorithm, using the 

data from Table 11, information of 17 plants 

were used as database in the algorithm. The 

data from the other 3 plants were separated; 

their readiness levels, which were calculated 

previously based on lab tests, were hidden 

and they were feed as unrated plants to the 

algorithm. Figure 1a,b demonstrate some 

interfaces through which the user can enter 

input data. The linguistic inputs of the case 

study were entered in the program for 

analysis. 

Validation of the algorithm would be 

proven if the readiness level of the unrated 

plants has successfully been predicted by the 

program with total correspondence to lab 

tests results. The results of the program were 

successful and the readiness levels of the 

unrated plants were accurately predicted, thus 

validate the algorithm correctness. Figure 

2a,b illustrate the program outputs 

corresponding to the readiness alternatives’ 

ranking for an unrated plant from the case 

study project and the scores that has been 

predicted for each readiness alternative.  

The program has predicted the readiness 

level of B for the case (Figure 2a). Lab test 

verified that result and indicated the case 

compressive strength has between 20-10 

percent error rate.  

Figure 3 shows the result of the program 

regarding compression between the current 

situation of the test case and the best/worth 

situations available in the database. Figure 4 

depicts the program output related to the 

ranking of production factors based on their 

effectiveness on the final results of the test 

case. As it can be seen, the test case can 

improve its level of readiness for producing 

high quality concrete by improving the 

quality level of its mix-design process. This 

result can help the concrete plant officials in 

order to choose the most effective production 

factor for making improvements. 

 

SUMMERY AND CONCLUSIONS 

 

There is no ideal way to evaluate the overall 

quality of concrete or readiness of concrete 

plants to produce high quality concrete. 

Therefore, an appropriate way to predict 

concrete plants ability is to use past 

information. A probabilistic multi-attribute 

algorithm for evaluating the readiness level of 

concrete plants is proposed in this paper. This 

algorithm has many advantageous over other 

equivalents. The most important advantage is 

that the algorithm uses the error rate of 

concrete compressive strength to evaluate the 

ability of concrete plants instead of just 

predicting compressive strength. This gives 

the algorithm advantage of compensating 

effect of factors that might periodically 

increase the compressive strength but not the 

overall quality.  
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(a) 

 
(b) 

Fig. 1. a) Input interface regarding the level of readiness attributes (Mix-design process), b) Input interface regarding 

user attitude toward the results 
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(a) 

 
(b) 

Fig. 2. a) Output interface corresponding to readiness alternatives ranking, b) Output interface corresponding to 

scores of similarity, difference and total for each readiness level 

E 5

F 6

B 1

C 2

D 3

A 4

Probabilistic Multi-Attribute Algorithm

Results Page

Readiness Level 

Readiness Level Ranking

Back 

Readiness 

Levels

Score of 

Similarity

Score of 

Difference

Total 

Score

A 20.62 -27.08 -6.46

B 50.25 -3.50 46.75

C 35.40 0.00 35.40

D 49.50 -23.13 26.38

E 10.50 -28.00 -17.50

F 12.92 -47.15 -34.23

Probabilistic Multi-Attribute Algorithm

Result Page

Scores
Back 
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Fig. 3. Output interface corresponding to the compression between the current situation and the best/worst situations 

 

 
Fig. 4. Output interface corresponding to the ranking of readiness attributes based on their effectiveness 

Readiness Attribute Highest Score Lowest Score Your Score

Raw materials 8 2 5

Mix-design process 6 2 3

QC and testing 9 1 6

Tools and equipment 8 4 7

Equipment calibration 9 4 8

Workmanship 7 2 3

Staff skills 9 2 2

What is your current status

Probabilistic Multi-Attribute Algorithm

Results Page

Current situation via the Best/Worth situations
Back 

Mix-design process

Second Tools and equipment

Third Raw materials

Equipment calibration

Sixth

Seventh

Staff skills

Probabilistic Multi-Attribute Algorithm

Results Page

Ranking of Readiness Attributes Effectivness

Rank Factor

Forth QC and testing

Fifth Workmanship

Importance Effectivness

First

Back 
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This algorithm is based on past 

information and a complete set of data can 

help the accuracy of its results. Seven 

production factors have been selected for the 

purposes of the algorithm but 

adding/removing PFs to the algorithm is 

feasible. Another advantage is that 

adding/removing attributes to the algorithm 

can be done without any change in the 

process or any extra calculation. Application 

of the algorithm in a case study reveals its 

robustness in evaluating the readiness level of 

concrete plants. Since the algorithm process 

is time consuming and is not understandable 

by a number of users, it has been programmed 

using the discussed steps. In this program, the 

user needs to determine the quality level of 

production factors for any specific concrete 

plant. Without the programmed algorithm, 

the user should know a basic knowledge of 

mathematics and data mining techniques for 

using this algorithm. It should be noted that 

the algorithm is a tool to assist professionals 

in the field of concrete. That is, the results of 

the algorithm should be examined carefully 

from other perspectives, since the process of 

evaluating the readiness level of concrete 

plants in order to produce high quality 

concrete and the quality of the concrete itself 

are complex processes. 
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