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1. Introduction 

The future of human's life will be affected by various factors. 

One of the most important factors is nanotechnology. The 

unwanted use of nanotechnology is back to several hundred 

years ago. Nanotechnology is the ability to produce new 

materials, tools and systems by controlling molecular and 

atomic scale, and using material properties in nano-dimension. 

Nanotechnology is used in many fields, including industry, 

medicine, agriculture, resource sustainability, aerospace, 

national security, electronics, and so on. It should be noted that 

the properties of materials, including electrical conductivity, 

thermal properties, mechanical properties, and other known 

physical and chemical properties change in the nanoscale. One 

of the problems in the nano scale is the change in the properties 

of matter. In fact, behaviors that are seen on a nanoscale scale 

are not predictable based on the behavior observed in macros. 

On the other side electrical chips and transistors will play an 

important role in human life. Researchers have been able to 

reduce the size of electrical chips by using nanotechnology. 

Nanotechnology is able to manufacture electrical devices in 

nano-scale that can detect and monitor biotic signs of the body. 

These sensors can be planted inside the body to report the biotic 

information. Nanotechnology is a new approach in all fields. 

Researchers at various disciplines are trying to build nano-

structures that help them achieve their goals. Meanwhile, 

mechanical scientists play an important role in advancing 

nanotechnology. Experimental observations is one of the 
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methods for modeling and studying nanoscale structures. 

Because of the costly nature of this method, other methods such 

as atomic modeling, hybrid atomic continuum mechanics are 

used. Modeling based on the continuum mechanics is less 

expensive than other methods. In the early 1900s, the Cosserat 

brothers proposed a theory to examine the behavior of 

nanomaterials. Their theory is the beginning of non-classical 

theories for studying the mechanical behavior of 

nanostructures. Some other non-classical theories for studying 

the behavior of nanostructures are couple stress and consistent 

couple stress theories [1-4], surface stress theory [5], non-local 

theory [6-10] and strain gradient theory [11-17]. In fact, the 

effect of small-scale in these theories appears as constants. 

Eringen [18], by conducting reviews in the Cosserat theory, 

he changed its name to the micropolar [19] theory that the two 

names are completely equivalent to each other. There are six 

elastic constants for homogeneous materials, in this theory. The 

micropolar theory of elasticity incorporates a local rotation 

of points as well as the translation assumed in classical 

elasticity and a couple stress (a torque per unit area) as well as 

the force stress (force per unit area). Couple stress theory is also 

a special case of Cosserat elasticity theory. In this theory, the 

number of degrees of freedom of rotation is considered equal 

to the medium rotation or the main directions of rotation of 

strain tensor. 

Nonlocal elasticity theory was introduced by Eringen [20] in 

the 1970s. The non-local elasticity theories are modified forms 
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of classical elastic theories, in which the effect of small scale 

as a coefficient, expresses the relation between non-local 

stresses and classical stresses [21]. In this theory it is assumed 

that the stress at a point depends on the strain at all points, 

whereas in classical theories, stress at a point depends only on 

the strain at that point. This theory is consistent (coincident) 

with predictions from molecular dynamics and molecular 

scattering (dispersion) observations. For homogeneous and 

isotropic materials, linear non-local elasticity theory leads to a 

set of integro-partial differential equations for displacement 

field, which is generally difficult to solve. For special 

conditions, these equations are reduced to a set of partial 

differential equations. 

The higher-order strain gradient elasticity theories, which 

included length-scale parameters, can show that material 

behavior depends on the size of the material on the micrometer 

scale. Mindlin [22] introduced a different elasticity model, 

taking into account differences in the terms related to kinetic 

energy and the strain energy density of nano-scale and micro-

scale. In his model, in addition to the displacements and strains 

in the macro-scale, the additional phrases such as micro-sized 

deformations, as well as relative deformations, which are the 

differences in macro- and micro-scale deformations, and most 

importantly the gradient of strains have been considered. In this 

theory, for isentropic and homogeneous materials, there will be 

18 independent parameters in elasticity relations, which would 

complicate the difficulty of solving elastic equations. This 

makes it difficult to solve the elasticity equations. After 

Mindlin, many researchers have tried to simplify these 

equations and provide models that deal with fewer parameters. 

Surface effect was introduced by Gurtin and Murdoch [23]. 

Phenomena of surface effects appear due to the static 

equilibrium of atoms on the surface. These effects are present 

in all materials and are not related to their scale and size, but 

these effects are important when the surface-to-volume ratio 

increases dramatically, mainly due to the reduction in the size 

of the piece. In other words, by reducing the size of the 

structure to the nano-scale, the surface-to-volume ratio 

increases so that the surface effects cannot be ignored. In this 

theory it is assumed the surface of the body, like a thin layer, is 

ideally attached to the material, and the elasticity properties of 

the surface are different with the elasticity properties of the 

material. This theory formulated the equilibrium and structural 

equations of material using classical theory and the surface 

effects were introduced as surface tensions in the material 

boundary conditions. 

In the last decade, there has been done a lot of valuable 

research on nanotechnology. In this review, we examine the 

researches done in a recent year in the field of nanomechanics. 

nonlocal and nonlocal strain gradient theories that are used to 

study the bending, buckling and vibration behavior of 

nanotubes, nano-plates and nano-beams are considered. 

2. Nonlocal elasticity theory 

2.1. Nanobeams and Nanorods 

Apuzzo et al. [24] presented a nonlocal model for nanobeams 

based on a special form of the free energy depending on a 

participation factor which led to a nonlocal elastic structural 

problem governed by a sixth-order differential equation 

equipped with suitable kinematic and static boundary 

conditions and implemented a nonlocal finite element 

procedure. They showed the effectiveness of the approach by 

some examples. Bağdatli and Togun [25] employed the 

nonlocal Euler–Bernoulli beam theory for the vibration and 

stability analysis of a nanobeam conveying fluid. They 

considered small-scale and damping effects and assumed the 

beam to be traveling with a constant mean velocity along with 

a small harmonic fluctuation. Barati [26] investigated nonlocal 

and surface effects on nonlinear vibration characteristics of a 

flexoelectric nanobeams under magnetic field using Eringen's 

nonlocal elasticity and surface elasticity theories to describe 

size-dependency of the nanobeam. They employed Galerkin 

method to satisfy boundary conditions along with analytical 

procedures to obtain the closed-form nonlinear frequency of 

flexoelectric nanobeam. They showed that magnetic field 

intensity, flexoelectric parameter, nonlocal parameter, elastic 

foundation and applied voltage on the top surface of the 

nanobeam have great influences on nonlinear vibration 

frequency. Behera [27] employed Euler–Bernoulli and 

Timoshenko beam theories in conjunction with nonlocal 

elasticity theory of Eringen boundary for static analysis of 

nanobeams. Challamel et al. [28] studied static and dynamic 

behavior of an axial lattice with direct neighboring interaction 

loaded by some distributed forces and in interaction with an 

elastic medium. They constructed a nonlocal rod model by 

continualization scheme of the lattice difference equations and 

derived some exact analytical solutions for the finite lattice 

system under some boundary conditions. Demir and Civalek 

[29] by emphasizing the  Eringen's nonlocal elasticity paradox 

for the cantilever boundary condition, developed an enhanced 

Eringen differential model by adding additional parameters to 

Eringen's nonlocal elasticity theory as an alternative solution 

method. They investigated bending of nano/micro beams under 

the concentrated and distributed loads by using Euler Bernoulli 

beam theory via the enhanced Eringen differential model. They 

also used Singularity function method and various types of 

boundary conditions to calculate the deflection of concentrated 

and distributed loaded beam. Demir et al. [30] developed the 

static analysis of nano-beams under the Winkler foundation 

and the uniform load by considering small scale effect along 

with Eringen's nonlocal elasticity theory using a FE approach. 

They used Galerkin weighted residual method to obtain the 

finite element equations and investigated the validity and 

novelty of the results for bending results.  Ebrahimi and Barati 

[31] investigated the vibration behavior of size-dependent 

nano-crystalline nano-beams based on nonlocal, couple stress 

and Eringen’s elasticity theories. They used a modified couple 

stress theory to capture rigid rotations of grains and 

incorporated Residual surface stresses into nonlocal elasticity 

and applied a differential transform method (DTM) satisfying 

various boundary conditions. Ebrahimi et al. [32] investigated 

the wave dispersion behavior of a rotating functionally graded 

material (FGMs) nanobeam by applying nonlocal elasticity 

theory of Eringen and assuming  material properties of rotating 

FG nanobeam according to a power-law model. Ebrahimi and 

Daman [33] used nonlocal elasticity theory to investigate the 

free vibration of curved functionally graded piezoelectric 

(FGP) nanosize beam in thermal environment. They employed 

Analytic Navier solution to solve the governing equations 
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obtained via the energy method for simply supported boundary 

conditions. The solution estimated the natural frequency for 

curved FGP nanobeam under the effect of a uniform 

temperature change and external electric voltage. Ebrahimi and 

Daman [34] proposed an analytical solution method for free 

vibration of curved functionally graded (FG) nonlocal beam 

supposed to different thermal loadings, by considering porosity 

distribution via nonlocal elasticity theory. Ebrahimi and 

Shaghaghi [35] proposed a non-classical beam model based on 

the Eringen’s nonlocal elasticity theory for nonlinear vibration 

analysis of magneto-electro–hygro–thermal piezoelectric 

functionally graded (PFG) nanobeams with power-law through 

the thickness distribution model rested in elastic foundation. 

They employed Hamilton’s principle to derive the equations 

and related boundary conditions within the framework of 

Euler–Bernoulli beam model with von-Karman type 

nonlinearity. They used Galerkin-based method to discretize 

the nonlinear partial differential motion equations. Ebrahimi-

Nejad and Boreiry [36] performed a parametric study of 

bending, buckling and vibrational behavior of size-dependent 

piezoelectric nanobeams under thermo-magneto-mechano-

electrical environment in the presence of surface effects. They 

employed Gurtin-Murdoch surface and Eringen's nonlocal 

elasticity theories in the framework of Euler–Bernoulli beam 

theory to obtain a new non-classical size-dependent beam 

model for dynamic and static analyses of piezoelectric 

nanobeams. They also presented numerical examples to 

demonstrate the effects of length, surface effects, nonlocal 

parameter and environmental changes (temperature, magnetic 

field and external voltage) on deflection, critical buckling load 

and natural frequency for different boundary conditions. 

Eltaher et al. [37] studied the effects of nonlocal elasticity and 

surface properties on static and vibration characteristics of 

piezoelectric nanobeams using thin beam theory and Gurtin–

Murdoch model for mechanical and piezoelectric surface 

nanoscale properties. They applied nonlocal elasticity theory 

considering length scale effect to describe the long–range 

atoms interactions. Fernández-Sáez and Zaera [38] studied the 

problem of the in-plane free vibrations (axial and bending) of a 

Bernoulli–Euler nanobeam using the mixed local/nonlocal 

Eringen elasticity theory to analytically obtain the natural 

frequencies of vibration by solving two uncoupled integro-

differential eigenvalue problems. They considered different 

kinds of end supports and analyzed the influence of both 

mixture parameter and length scale. 

Ghaffari [39] offered a complete solution to analyze the 

mechanical behavior of Nano-beam under non-uniform loading 

considering the effects of size (nonlocal parameters), non-

homogeneity constants, and different boundary conditions. 

They used non-local elasticity theory and kinematics of the 

Euler–Bernoulli beam theory for displacement field. 

Ghannadpour [40] investigated bending, buckling and 

vibration behaviors of nonlocal Timoshenko beams using a 

variational approach and outlining the weak form of equations. 

Hache et al. [41] focused on the possible justification of 

nonlocal beam models (at the macroscopic scale) from an 

asymptotic derivation based on nonlocal two-dimensional 

elasticity (at the material scale). They derived governing partial 

differential equations using Taylor series expansion, through 

the dimensionless depth ratio of the beam. Hosseini and 

Rahmani [42] analyzed the bending and vibration behavior of 

a curved FG nanobeam with material properties varying 

through the radius and using the nonlocal Timoshenko beam 

theory. Buckling  analysis  of  a  nano  sized  beam was  

performed by Kadıoğlu and Yaylı [43] using Timoshenko  

beam  theory  and Eringen’s nonlocal elasticity theory. To 

obtain Fourier coefficients they assumed vertical displacement 

function as a Fourier sine series and rotation function as a 

Fourier cosine series enforced by Stokes’ transformation and 

obtained higher order derivatives of them. Then they derived 

critical buckling loads by calculating determinant of resulted 

coefficient matrix. Kaghazian [44] performed vibration 

analysis of a piezoelectric nanobeam by modelling it based on 

Euler-Bernoulli beam theory and using the nonlocal elasticity 

theory to serve in several nano electromechanical systems. 

Kammoun [45] reported an investigation on thermo-electro-

mechanical vibration of grapheme piezoelectric sandwich 

nanobeams and derived the governing equations based on the 

nonlocal elasticity theory, Timoshenko beam theory and 

Hamilton's principles and then solved them using generalized 

differential quadrature (GDQ) method. Khaniki [46] by 

emphasizing the inability of differential form of nonlocal 

elastic theory in modelling cantilever beams and inaccurate 

results for some type of boundaries, presented a reliable 

investigation on transverse vibrational behavior of rotating 

cantilever size-dependent beams. He used Eringen's two-phase 

local/nonlocal model to derive governing higher order. In order 

to indicate the influence of different material and scale 

parameters, he presented a comprehensive parametric study 

and discussed the results. Loghmani et al. [47] investigated the 

effect of discontinuities such as cracks, steps on the length, and 

the mass of attached buckyball on the tip of nanoresonators on 

natural frequencies in longitudinal vibration analysis. By using 

the Eringen nonlocal elasticity theory from wave viewpoint, 

they derived propagation, transmission and reflection functions 

for nanorods and obtained explicit expressions for natural 

frequencies. Marinca and Herisanu [48] focused on obtaining 

explicit analytical approximate solutions via a new procedure, 

namely the Optimal Auxiliary Functions Method (OAFM) for 

the post buckling behavior of an initially imperfect nonlocal 

elastic column by adopting Euler-Bernoulli hypothesis and 

Eringen’s nonlocal elasticity. Martowicz [49] provided an 

overview of nonlocal formulations for models of elastic solids. 

He presented the physical foundations for nonlocal theories of 

continuum mechanics, followed by various analytical and 

numerical techniques. Massoud and Tahani [50] investigated 

the nonlinear vibration of an Euler–Bernoulli nanobeam resting 

on a non-linear viscoelastic foundation subjected to a harmonic 

electrostatic field excitation. The non-linear viscoelastic 

foundation is considered for both hardening and softening 

cases. By neglecting of the in-plane inertia and using Eringen's 

nonlocal elasticity theory along with Galerkin method, they 

derived the equation of motion. Merzouki et al. [51] developed 

a finite element approach for the static analysis of curved 

nanobeams using nonlocal elasticity beam theory based on 

Eringen formulation coupled with a higher-order shear 

deformation accounting for through-thickness stretching. 

Mohyeddin and Jafarizadeh [52] developed a nonlocal elastic 

beam model by incorporating Eringen’s nonlocal constitutive 

equation into the large deflection beam theory for a nano-

cantilever Euler–Bernoulli beam and solved the equilibrium 
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equations in an iterative manner using the shooting method. 

Zamani Nejad and Hadi [53] investigated the free vibration 

analysis of Euler–Bernoulli nano-beams made of bi-directional 

functionally graded material with small scale effects. They 

used the non-local elasticity theory coupled with Euler–

Bernoulli nano-beams to study the small scale effects on free 

vibration. Zamani Nejad and Hadi [9] formulated the problem 

of the static bending of Euler–Bernoulli nano-beams made of 

bi-directional functionally graded material with small scale 

effects. Their model was based on the Eringen's nonlocal 

elasticity theory applied to Euler–Bernouilli nano-beams. 

Zamani Nejad et al. [54] carried out buckling analysis of the 

nano-beams made of two-directional functionally graded 

materials (FGM) with small scale effects based on the nonlocal 

elasticity theory.  

Rahimi and Rashahmadi [55] considered a novel micro-

electromechanical system (MEMS) and nano-

electromechanical system (NEMS) with a controllable thermo-

elastic damping of axial vibration based on Eringen nonlocal 

theory. They presented effects of different parameters like the 

gradient index, nonlocal parameter, length of nanobeam and 

ambient temperature on the thermo-elastic damping quality 

factor and showed that the thermo-elastic damping can be 

controlled by changing different parameters. Sidhardh and Ray 

[56] developed a finite element model for the static analysis of 

smart nanobeams integrated with a flexoelectric layer on its top 

surface, using nonlocal elastic theory. The flexoelectric layer 

acted as a distributed actuator of the nanobeam. They used a 

layerwise displacement theory to derive the element stiffness 

matrices from variational principles incorporating nonlocal 

effects. Tufekci and Aya [57] investigated the static and 

dynamic behavior of a curved planar nanobeam having variable 

curvature and cross-section. They derived nonlocal constitutive 

equations by using Eringen nonlocal theory in cylindrical 

coordinates and then implemented into the classical beam 

equations. Vosoughi et al. [58] investigated the thermal 

buckling and post-buckling behaviors of moderately thick 

nanobeams subject to uniform temperature rise via employing 

the differential quadrature method (DQM). They derived 

governing equations of the nanobeams considering the von-

Kármán’s assumptions and used the Eringen’s nonlocal 

elasticity theory in conjunction with the first-order shear 

deformation beam theory. Wang et al. [59] carried out the 

calibration of Eringen’s small length scale coefficient e0 for 

elastically restrained beams (in the context of buckling and 

axially loaded vibration) based on connection between a 

discrete beam model and the Eringen’s nonlocal beam model. 

Xue et al. [60] extended classical thermoelasticity to simulate 

the thermoelastic responses of multilayered structures in two 

aspects: in mechanical sense, they used Eringen’s nonlocal 

elasticity to depict the size-dependence; meanwhile, considered 

fractional order strain to describe the mechanical phenomena 

caused by viscoelasticity. Yaylı [61] presented longitudinal 

vibration analysis of FG restrained nanorods via non-local 

elasticity theory by assuming two axial springs attached to a 

FG nanorod at both ends. They then derived a coefficient 

matrix by considering the non-local differential relations for 

the FG nanorod and analyzed it via an exact eigenvalue method 

and finally used the results calculated from finite-element 

method to validate their method and discussed the influence of 

FG index, non-local parameter and boundary conditions on the 

axial frequencies of FG nanorods. Zhang et al. [62] investigated 

vibration characteristics of a piezoelectric nanobeam 

embedded in a viscoelastic medium based on nonlocal Euler–

Bernoulli beam theory. They first derived the governing 

equations of motion and boundary conditions for vibration 

analysis using Hamilton’s principle, where nonlocal effect, 

piezoelectric effect, flexoelectric effect, and viscoelastic 

medium were considered simultaneously. Zhang [63] by 

identifying three critical frequencies independent of boundary 

conditions together with a critical length, which determine the 

vibration behaviors of a nonlocal Timoshenko beam stated that 

unlike a local Timoshenko beam which has two frequency 

spectra, a nonlocal Timoshenko beam may have two frequency 

spectra or one frequency spectrum depending on the nonlocal 

effect. Zhao et al. [64] modeled a nonlocal elastic 

micro/nanobeam theoretically with the consideration of the 

surface elasticity, the residual surface stress, and the rotatory 

inertia in presence of nonlocal and surface effects. Zhou [65] 

presented a new Hamiltonian-based approach to find exact 

solutions for transverse vibrations of double-nanobeam-

systems embedded in an elastic medium. They used the 

nonlocal Euler-Bernoulli and Timoshenko beam theories to 

model the beam within the frameworks of the symplectic 

methodology. After expressing the governing equations in a 

Hamiltonian form, they obtained exact frequency equations, 

vibration modes and displacement amplitudes by using 

symplectic eigenfunctions and end conditions.  

 

2.2. Nanosheets and nanoplates 

Abdollahi and Ghassemi [66], investigated surface and 

nonlocal effects in the analysis of buckling and vibration in 

rectangular single-layered graphene sheets embedded in elastic 

media and subjected to coupled in-plane loadings and thermal 

conditions. They considered the small-scale and surface effects 

using the Eringen's nonlocal elasticity and Gurtin-Murdoch's 

theory, respectively. They also used the differential quadrature 

method (DQM) for the solution of the relevant problems and 

validated the results against Navier's solutions. Ghorbanpour 

and Zamani [67] investigated the free vibration analysis of 

sandwich nanoplate with functionally graded porous core and 

piezoelectric face sheets. Arefi et al. [68] studied magnetic and 

electric buckling loads of three-layered elastic nanoplate with 

exponentially graded core and piezomagnetic face-sheets with 

material properties of the nano-graphene core obeying the 

exponential function along the thickness direction. They 

derived governing equations based on first-order shear 

deformation theory using variational method and investigated 

the influence of nanoscale by employing nonlocal piezo-

magneto-elasticity theory. Arefi and Zenkour [69] presented 

thermo-electro-magneto-mechanical bending analysis of a 

sandwich nanoplate based on Kirchhoff’s plate theory and 

nonlocal theory. The sandwich nanoplate included an elastic 

nano-core and two piezomagnetic face-sheets actuated by 

applied electric and magnetic potentials. Bachher and Sarkar 

[70] established a new nonlocal theory of generalized 

thermoelastic materials with voids based on Eringen’s nonlocal 

elasticity and Caputo fractional derivative to study transient 

wave propagation in an infinite thermoelastic material.  The 

material contained voids was subjected to a time-dependent 

continuous heat sources distributed in a plane area. Barati [71] 

presented new solutions to examine large amplitude vibration 

of a porous nanoplate resting on a nonlinear hardening elastic 

foundation modeled by nonlinear four-variable plate theory. 



Journal of Computational Applied Mechanics, Vol. 49, No. 1, June 2018 

201 

 

Bastami and Behjat [72] investigated buckling and free 

vibration of piezoelectric nano-plate on elastic foundation by 

employing nonlocal elasticity and classical plate theory and 

assuming simply supported boundary conditions and plate 

subjected to external electric voltage. Daneshmehr et al. [73] 

investigated the free vibration behaviors of the nanoplate made 

of functionally graded materials by applying the Eringen’s 

nonlocal theory to study the small scale effects on natural 

frequencies. Dastjerdi and Akgöz [74] investigated the static 

and dynamic behaviors of macro and nano inhomogeneous 

plates made of functionally graded materials based on three-

dimensional elasticity theory in combination with the nonlocal 

theory of Eringen. Despotovic [75] studied the problem of 

stability and vibration of a square single-layer graphene sheet 

under body force using Eringen’s theory. They used classical 

plate theory, upgraded with nonlocal elasticity theory to 

formulate the differential equation of stability and vibration of 

the nanoplate. Ebrahimi and Barati [76] carried out damping 

vibration analysis of multi-phase viscoelastic nanocrystalline 

nanobeams on viscoelastic medium accounting for nano-grains 

and nano-voids sizes. They applied couple stress and surface 

energy effects for vibration analysis of nanocrystalline 

nanobeams. They assumed viscoelastic medium as infinite 

parallel springs as well as shear and viscous layers and 

employed Hamilton’s principle to derive the governing 

equations and the related boundary conditions. They then 

solved the equations by applying differential transform 

method. Ghasemi et al. [77] studied the nonlocal buckling 

behavior of biaxially loaded graphene sheet with piezoelectric 

layers based on an orthotropic intelligent laminated nanoplate 

model. They used nonlocal elasticity theory in the buckling 

analysis to show the size scale effects on the critical buckling 

loads and employed third-order shear and normal deformation 

theory to obtain the nonlinear equilibrium equations. 

Ghorbanpour-Arani et al [78] investigated buckling analysis of 

an embedded nanoplate integrated with magnetoelectroelastic 

(MEE) layers based on a nonlocal magnetoelectroelasticity 

theory. They simulated surrounding elastic medium by the 

Pasternak foundation considering both shear and normal loads. 

The refined zigzag theory was used to model the Sandwich 

Nanoplate subject to both external electric and magnetic 

potentials. Goodarzi et al. [79]  studied the free vibration 

behavior of rectangular FG nanoscale plates within the 

framework of the refined plate theory (RPT) and taking small-

scale effects into account. They used the nonlocal elasticity 

theory to obtain the governing equations for single-layered FG 

nanoplate and employed the Navier’s method to obtain closed-

form solutions for rectangular nanoplates assuming that all 

edges are simply supported. Jamali and Ghassemi [80] 

investigated frequency analysis of rectangular piezoelectric 

nanoplates under in-plane forces via the surface layer and non-

local small-scale hypotheses. Nazemnezhad et al. [81] 

investigated vibration analysis of multi-layer graphene sheets 

(MLGSs) by using nonlocal elasticity. They considered van der 

Waals interactions of every two adjacent layers in the analysis 

which resulted in interlayer shear effect. Their proposed 

formulation was according to sandwich model (SM) and 

Molecular Dynamic (MD) simulation was implemented to 

verify the model.  

Norouzzadeh and Ansari [82] presented a size-dependent 

analysis of the surface stress and nonlocal influences on the free 

vibration characteristics of rectangular and circular nanoplates 

made of functionally graded materials with two distinct surface 

and bulk phases. The nonlocal and surface effects were 

captured by the Eringen and the Gurtin-Murdoch surface 

elasticity theories, respectively. Rong et al. [83] proposed an 

analytical Hamiltonian-based model for the dynamic analysis 

of rectangular nanoplates using the Kirchhoff plate theory and 

Eringen’s nonlocal theory. By  reducing the dynamic problem 

in a symplectic space to a unified Hamiltonian dual equation 

formed by a total unknown vector consisting of displacements, 

rotation angles, bending moments and generalized shear forces, 

They established exact solutions for free vibration, buckling 

and steady state forced vibration by the eigenvalue analysis and 

expansion of eigenfunction without any trial functions. 

Shahrbabaki [84] investigated three-dimensional free vibration 

of simply-supported nanoplate and wave propagation in three-

dimensional infinite nonlocal solid by using suitable potential 

functions for Helmholtz displacement vector. They developed 

novel trigonometric series as approximating functions in a 

Galerkin based approach to deal with other boundary 

conditions. Shahsavari and Janghorban [85] studied the size-

dependent effects on the time-dependent bending and shearing 

responses of single-layer graphene sheets (SLGSs) induced by 

displacement of the concentrated moving load along the SLGSs 

are. Wu et al. [86] investigated the vibration behavior of double 

layer graphene sheets (DLGSs) in thermal environments as 

energy conservation device in building materials. They used 

nonlocal elastic theory and classical plate theory (CLPT) to 

derive the governing equations and employed the element-free 

method to analyze the vibration behaviors of DLGSs embedded 

in an elastic medium. Zarei [87] studied buckling and free 

vibration analysis of a circular tapered nanoplate with linear 

variation of thickness in radial direction and subjected to in-

plane forces. He employed nonlocal elasticity theory to capture 

size-dependent effects and Raleigh-Ritz method along with 

differential transform method to obtain the frequency equations 

for different boundary conditions. Zhang et al. [88] derived 

semi-analytical solutions for vibration analysis of nonlocal 

piezoelectric Kirchhoff plates resting on viscoelastic 

foundation with arbitrary boundary conditions. They first 

obtained the governing equations of motion and boundary 

conditions based on the nonlocal elasticity theory for 

piezoelectric materials and Hamilton's principle then 

developed the Galerkin strip distributed transfer function 

method to solve the governing equations for the semi-analytical 

solutions of natural frequencies. Zhang [89] studied the 

geometrically nonlinear vibration behavior of DLGSs using 

von Kármán plate model incorporated with nonlocal elasticity 

theory accounting for the small scale effect.  Li et al. [90] 

introduced thermal nonlocal effect into the thermo-electro-

mechanical model based on nonlocal elasticity theory to further 

shed light on the size-dependent coupling behavior of thermal, 

electric, and elastic fields. They derived coupled field 

equations involving size-dependent parameters and obtained 

the solutions using Laplace transformation methods. Karimi 

and Shahidi [91] investigated the influence of temperature 

change on the vibration, buckling, and bending of orthotropic 

graphene sheets embedded in elastic media including surface 

energy and small-scale effects is. To this aim, they used the 

nonlocal constitutive relations of Eringen and surface elasticity 

theory of Gurtin and Murdoch, respectively. They used 

Hamilton’s principle and two-variable refined plate theory to 

derive the governing equations for bulk and surface of 
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orthotropic nanoplate and employed finite difference method to 

solve governing equations. They verified obtained results with 

Navier’s method and validated results reported in the literature.  

2.3. Nanotubes and Nanoshell 

Arefi and Zenkour [92] presented two-dimensional 

thermoelastic analysis of a functionally graded nanoshell with 

Material properties assumed to be mixture of ceramic and metal 

obeying a power law distribution based on nonlocal elasticity 

theory. They used first-order shear deformation theory (FSDT) 

for axial and radial deformations simultaneously and principle 

of virtual work for derivation of the governing equations.  

Robinson et al. [93] examined the buckling of carbon nanotube 

(CNT) modeled as nonlocal Euler-Bernoulli beam under self-

weight and resting on elastic foundations. Belhadj [94] 

investigated the vibration behaviour of a nanoscale rotating 

shaft based single-walled carbon nanotube using Euler-

Bernoulli beam model and Eringen’s nonlocal theory of 

elasticity for the dynamic behavior of the nanorotor. They 

reported effects of different parameters and boundary 

conditions and discussed the results. Chemi et al. [95] by 

implementing the nonlocal Timoshenko beam theory, 

determined the nonlocal critical buckling loads of chiral 

double-walled carbon nanotubes embedded in an elastic 

medium using nonlocal theory. They investigated and 

discussed the effect of different parameters such as elastic 

medium, the buckling mode number, chirality, and aspect ratio 

on the nonlocal critical buckling loads of these structures. 

Farajpour [96] investigated  nonlinear buckling of magneto-

electro-elastic hybrid nanoshells in thermal environment using 

a size-dependent continuum model. The nanocomposite 

cylindrical shell was composed of a carbon nanotube  (CNT), 

a microtubule (MT) and a MEE nanoscale layer coupled by 

polymer or filament matrix and subjected to thermo-electro-

magnetic loads. They applied small nonlocal elasticity theory 

considering scale effect and Pasternak model to simulate the 

normal and shear behavior of the coupling elastic medium. He 

used the principle of virtual work and von Karman’s strain-

displacement relations to derive equations and obtained non-

dimensional postbuckling loads using the Galerkin’s approach.  

Kiani [97] explored properties of traveling transverse waves in 

vertically aligned jungles of single-walled carbon nanotubes 

(SWCNTs) in the presence of a longitudinal magnetic field 

using nonlocal higher-order beam theory. He established 

nonlocal discrete and continuous models and declared the 

capabilities of the continuous model in capturing the 

characteristics of waves by the discrete model. He investigated 

different effects on physical properties of the structure.  Li and 

Hu [98] presented investigated the free torsional vibration of 

bi-directional FG tubes composed of two different materials 

with continuously varying along the radius and length 

directions. They employed nonlocal elasticity theory to derive 

the difference equation of torsional motion, which were 

reduced to the classical governing equation by simply setting a 

zero nonlocal parameter. They derived closed-form solutions 

of torsional frequencies and mode shapes and showed that the 

torsional frequencies can be significantly affected by the 

through-radius and through-length gradings of the bi-

directional FG nanotubes. 

Mu’tasim [99] studied the nonlinear free vibration and 

frequency veering of a single wall carbon nanotube (SWCNT) 

with imperfection modeled as half sine and clamped at both 

ends based on nonlocal elasticity theory. He used the Euler-

Bernoulli Beam and Hamilton’s principle to derive the 

nonlinear equation of motion. He considered various effects 

such as nonlocal elasticity, geometric initial rise/imperfection, 

and the effect of the axial force induced by mid-plane stretching 

in the derivation model of the CNT. He solved the resulting 

nonlinear temporal equation using the method of multiple 

scales (MMS) after discretizing the equations using the 

assumed mode method by inserting the exact linear eigenmode 

shape and obtained nonlinear natural frequencies of the first 

three modes of vibrations, for different values of 

rise/imperfection amplitude, and for different values of the 

nonlocal parameter.  Rahmani et al. [100] used modified 

nonlocal elasticity theory to analyze the transverse forced 

vibration of a single-walled carbon nanotube (SWCNT) under 

excitation of a moving harmonic load in a parametric study and 

investigated the influences of different parameters on forced 

deflection of the nanotube in details. Size-dependent thermal 

buckling and post-buckling behavior of FGM nanotubes with 

porosities was carried out by She et al. [101] using a refined 

beam theory and based on Eringen nonlocal elasticity model 

incorporating the small scale effect. They considered two types 

of porosity distribution i.e. even and uneven distribution and 

assumed material properties to be temperature-dependent and 

vary in the radial direction. Tiwari and Nagar [102] Presented 

paper reviews on buckling analysis of nanostructure designed 

through the theory of nonlocal elasticity and discussed a variety 

of mathematical techniques to determine buckling load and 

applicability of nonlocal continuum models over local 

continuum models. They discussed impact of various 

parameters like size of nanostructures, nonlocal parameter and 

length-to-width ratio for various boundary conditions. Wen et 

al. [103] investigated free vibration analysis of single-walled 

carbon nanotubes (SWCNTs) using a higher-order theory of 

nonlocal elastic cylindrical beams by taking the rotary inertia, 

shear deformation and small scale effect into account 

simultaneously. Their model was capable of identically 

satisfying shear-free surface condition and did not need to 

introduce the shear correction factor. They derived 

characteristic equations, natural frequencies and vibration 

mode shapes in closed form for different boundary conditions 

and compared numerical results with those obtained by the 

molecular dynamics simulation. Zhang et al.  [104] Conducted 

a comprehensive study of the small-scale effects on the 

buckling behaviors of carbon honeycombs (CHCs) by 

employing molecular dynamics (MD) simulations and 

Eringen’s nonlocal elasticity theory. According to MD 

simulation results the small-scale effects stemming from the 

long-range van der Waals interaction between carbon atoms 

could considerably affect the buckling behaviors of CHCs. 

They also developed a nonlocal continuum mechanics (CM) 

model by employing Eringen’s nonlocal elasticity theory to 

incorporate the small-scale effects into the theoretical analysis 

of the buckling of CHCs and compared nonlocal CM model 

with MD simulations which had good agreement under proper 

considerations.  

3. Nonlocal strain gradient theory 

3.1. Nanobeams and Nanorods 

Barati [105] investigated forced vibrations analysis of 

nanobeams on elastic substrate and subjected to moving loads 

using nonlocal strain gradient theory (NSGT). He assumed the 

nanobeam made of functionally graded material (FGM) with 
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even and uneven porosity distributions. After obtaining 

dynamic deflection of the nanobeam via Galerkin and inverse 

Laplace transform methods, he examined and discussed the 

effect of different parameters on forced vibration behavior of 

nanobeams. Barati [106] investigated wave dispersion in 

thermally affected and elastically bonded nanobeams with 

material imperfections or porosities evenly dispersed across the 

thickness by applying a general nonlocal strain-gradient 

elasticity model with two nonlocal and one strain-gradient 

parameters. He modeled nanobeam with uniform thickness and 

by refined shear deformation beam theory with sinusoidal 

transverse shear strains. Afterwards he derived the governing 

equations by Hamilton’s rule and analytically solved to obtain 

wave frequencies and the velocity of wave propagation.  

Barretta et al. [107] investigated linear dynamics of nanobeams 

numerically according to a combination of Eringen's nonlocal 

elasticity and second-gradient strain elasticity theories. They 

assumed elastic properties of the beam as functionally graded 

in cross-section according to a power law and examined the 

effects of the functional grading and of the different elastic 

potentials on this modulation. Ebrahimi and Barati [108] used 

nonlocal strain gradient theory to analyze vibration 

characteristics of axially FG nanobeams resting on variable 

elastic foundation. The nonclassical nanobeam model of their 

study captured a length scale parameter to explore the influence 

of strain gradients and a nonlocal parameter to investigate the 

long-range interactions between the particles and was capable 

to be degenerated into the classical models if the material 

length scale and nonlocal stress field parameter are both taken 

to be zero. They modeled Elastic foundation consisting two 

layers: a Winkler layer with variable stiffness and a Pasternak 

layer with constant stiffness. Ebrahimi and Daman [109] 

proposed an analytical  method to study thermo-mechanical 

dynamic behavior and characteristics of embedded smart shear 

deformable curved piezoelectric nanobeams made of porous 

electro-elastic FG materials using nonlocal strain gradient 

beam theory.  They investigated the effects of pores on the 

mechanical and physical properties. El-Borgi et al. [110] 

investigated the torsional vibration of size-dependent 

viscoelastic nanorods modeled using Kelvin–Voigt damping 

model embedded in an elastic medium with different boundary 

conditions. They combined the nonlocal theory with the strain 

and velocity gradient theory to capture both softening and 

stiffening size-dependent behavior of the nanorods. They 

obtained damped eigenvalue solutions both analytically and 

numerically using a Locally adaptive Differential Quadrature 

Method (LaDQM). Faghidian [111] by using nonlocal strain 

gradient theory derived the governing differential and 

boundary conditions of dynamic equilibrium and differential 

constitutive equations of the classical and first-order nonlocal 

stress tensor in the most general form based on the Reissner 

stationary variational principle. They used nonlinear vibrations 

of size-dependent Bernoulli-Euler and Timoshenko beams to 

exhibit the application value of Reissner variational principle 

and employed the weighted residual Galerkin method, the 

homotopy analysis method to determine the closed form 

analytical solutions of the geometrically nonlinear vibration 

equations. Faghidian [112] employed Reissner mixed 

variational principle to establish the nonlinear differential and 

boundary conditions of dynamic equilibrium governing the 

flexure of beams when the effects of true shear stresses are 

included. They derived nonlinear size-dependent model of the 

Reissner nano-beam in the framework of nonlocal strain 

gradient elasticity theory and then obtained the closed form 

analytical solutions for the geometrically nonlinear flexural 

equations and compared to the nonlinear flexural results of the 

Timoshenko size-dependent beam theory and discussed 

different issues such as differences between the two. Fakher 

and Hosseini-Hashemi [113] studied the static bending and free 

vibration behavior of Euler nanobeams using three different 

approaches nonlocal strain gradient elasticity including 

differential, integral satisfying and integral without satisfying 

higher order boundary conditions. They also adopted two 

different types of Rayleigh–Ritz method i.e. polynomial and in 

the other, combination of polynomial and trigonometric as 

admissible functions. Then they obtained bending deflections 

and natural frequencies of nanobeams with different boundary. 

Hadi et al. [114] investigated free vibration of three-directional 

FG material (TDFGM) using Euler–Bernoulli nano-beam, with 

small scale effects and the nonlocal strain gradient elasticity 

theory to survey the small scale effects on natural frequencies. 

Jafarsadeghi-Pournaki [115] proposed a theoretical model by 

employing nonlocal strain gradient theory (NLSGT) and Euler-

Bernoulli beam model considering nonlinear geometric effect 

resulting from mid-plane stretching to investigate static pull-in 

instability of FG electrostatic nano-bridge under the influence 

of electrostatic and van der Waals (vdW) forces in thermal 

environment. He introduced a new surface reference for 

eliminating the coupling between the stretching and bending 

due to the asymmetrical material variation along the thickness 

and derived the governing equation utilizing minimum energy 

principle, linearized by means of the step-by-step linearization 

method (SSLM) and solved by Galerkin based weighted 

residual method. Li and Hu [116] used nonlocal strain gradient 

theory and a size-dependent nonlinear Euler–Bernoulli beam 

considering the geometric nonlinearity due to the stretching 

effect of the mid-plane. They analytically obtained the post-

buckling deflections and critical buckling forces of simply 

supported beams. Li and Hu [117] investigated the nonlinear 

bending and free vibration behaviors of  the through-thickness 

power-law variation of two-constituent FG materials using the 

nonlocal strain gradient theory and size-dependent nonlinear 

Euler-Bernoulli and Timoshenko beam models. They 

considered material length scale and nonlocal parameters to 

account for the effects of both inter-atomic long-range force 

and microstructure deformation mechanism. Li et al. [118] 

studied the longitudinal vibration analysis of small-scaled rods 

model considering nonlocal parameter and material length 

scale parameter using nonlocal strain gradient theory. They 

derived analytical solutions predicting the natural frequencies 

and mode shapes of the rods with different boundary 

conditions. Li et al. [119] in another study used a size-

dependent Timoshenko beam model, taking into account 

through-thickness power-law variation of a two-constituent FG 

material in the framework of the nonlocal strain gradient 

theory. Their model contained a material length scale 
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parameter introduced to consider the significance of strain 

gradient stress field and a nonlocal parameter to consider the 

significance of nonlocal elastic stress field.  

1. Li et al. [120] investigated the size-dependent nonlinear 

free vibration behavior of beam with geometric imperfections 

in form of even and uneven dispersion patterns and used 

Hamilton’s principle to derive the equations and corresponding 

boundary conditions based on the Euler–Bernoulli beam 

model, the von Kármán type nonlinearity and the nonlocal 

strain gradient theory. They then employed Galerkin’s 

approach to obtain approximate analytical solution free 

vibration of a hinged-hinged nano/micro beam. They used 

porous Gold for a comprehensive parametric study and 

determined material and scaling parameters of Au. Li et al. 

[121] applied the nonlocal strain gradient theory and the Euler–

Bernoulli beam model to build a size-dependent 

inhomogeneous beam model accounting for the through-length 

power-law variation of a two-constituent axially FG material. 

They introduced a material length scale parameter and a 

nonlocal parameter in the axially FG beam model and solved 

the bending, buckling and vibration problems of axially FG 

beams by a generalized differential quadrature method and 

investigated the influences of different parameters on 

responses. Lv et al. [122] studied the effect of material defects 

on nonlinear vibration behavior of embedded FG nanobeams 

by employing the nonlocal strain gradient theory and 

considering the size-dependent governing equations 

accounting for the geometric nonlinearity and elastic medium. 

To quantify the material defects, they introduced concept of 

defect degree and then developed the defective FG nanobeam 

model. They proposed two methods, i.e., sensitivity based 

interval analysis method and iterative algorithm based interval 

analysis method to solve this model and discussed different 

effects at last. Rajabi et al. [123] investigated the size-

dependent nonlinear vibration of Euler–Bernoulli nanobeams 

under moving harmonic loads traveling with variable velocities 

within the scope of the nonlocal strain gradient elasticity 

theory. They employed a multistage-linearization technique to 

solve the Duffing equation approximately. Sahmani et al. [124] 

conducted an investigation to anticipate the size-dependent 

nonlinear bending of FG porous micro/nano-beams with 

uniform distribution of porosity reinforced with graphene 

platelets, and subjected to the uniform distributed load together 

with an axial compressive load. They employed the nonlocal 

strain gradient elasticity theory by incorporating size effects in 

the third-order shear deformable beam model. Shaat [125] 

reduced the general nonlocal theory to the strain gradient and 

the couple stress theories for slowly varying acoustic waves, 

i.e., weak nonlocal fields, and then by comparing to the general 

nonlocal theory, discovered the nonlocal characters of the 

strain gradient and couple stress theories. Moreover, by fitting 

the experimental dispersion curves of materials, reported the 

nonlocal parameters and the material coefficients and length 

scales of these theories for some materials including diamond, 

graphite, silicon, silver, gold, copper, and platinum. Tang et al. 

[126] investigated forced vibration of FG nanobeams resting 

on the nonlinear elastic foundations using the nonlocal strain 

gradient theory. They assumed the FG material properties to be 

temperature-dependent and change continuously along the 

thickness according to the power-law function (PFGM) or 

sigmoid function (SFGM). They derived the governing 

equations based on the Euler–Bernoulli beam theory and von-

Kármán geometric nonlinearity and by considering the 

deviation between the geometrical and physical neutral 

surfaces. At last they used multiple time scale method to derive 

closed-form approximate solution for nonlinear forced 

vibration of a FG nanobeam and discussed different effects. Xu 

[127] investigated the size effects on the dynamic behaviors of 

rods within the framework of the nonlocal strain gradient 

elastic theory. He derived variationally consistent boundary 

conditions using the weighted residual method with respect to 

the known equation of motion of rods. Zhu and Li [128] 

formulated the longitudinal dynamic problem of a size-

dependent elasticity rod by utilizing an integral form of 

nonlocal strain gradient theory. They employed convolution 

integral over nonlocal kernel functions nonlocal strain gradient 

model to account for the energies diffused from surrounding 

particles in a reference domain. By reducing the complicated 

integro-differential equations to a sixth order differential 

equation, they derived the nonlocal strain gradient rod under 

various boundary conditions and explicitly showed that the 

integral rod model can exert stiffness-softening and stiffness-

hardening effects by considering various values of the size-

dependent parameters. Zhu and Li [129] developed a size-

dependent integral elasticity model for a small-scaled rod in 

tension based on the nonlocal strain gradient theory. To 

incorporate the scaling effects of nonlocal stress and 

microstructure-dependent strain gradient, they considered 

nonlocal parameter and a material length scale parameter. They 

stated the integral rod model is both self-consistent and well-

posed.  

3.2. Nanosheets and nanoplates 

Barati [130] developed a nonlocal strain gradient plate model 

considering two scale parameters related to the nonlocal and 

strain gradient effects for vibration analysis of double-layered 

graded nanoplates under linearly variable in-plane mechanical 

loads in hygro-thermal environments. He used shear 

deformation plate theory needless of shear correction factors 

and derived governing equations via Hamilton’s principle and 

used Galerkin’s method to solve the governing equations. 

Barati [131] modeled a vibrating porous double-nanoplate 

system under in-plane periodic loads using the generalized 

nonlocal strain gradient theory (NSGT) to examine both 

stiffness-softening and stiffness-hardening effects for a more 

accurate analysis of nanoplates. He used a modified rule of 

mixture to incorporated Nanopores or nanovoids to the model. 

He used a refined four-variable plate theory with fewer field 

variables than first-order plate theory. After deriving equations, 

he solved them for hinged nanoplates via Galerkin's method 

and discussed different effects on responses. Ebrahimi and 

Barati [132] developed a nonlocal strain gradient plate model 

for vibration analysis of graphene sheets resting on elastic 

substrate and under nonuniform in-plane mechanical loads 

considering two scale parameters related to the nonlocal and 

strain gradient effects. They modeled graphene sheet via a two-
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variable shear deformation plate theory needless of shear 

correction factors and derived the governing equations of a 

nonlocal strain gradient graphene sheet via Hamilton’s 

principle. Ebrahimi and Barati [133] studied vibration analysis 

of double-layered graphene sheets under biaxial in-plane loads 

by developing a nonlocal strain gradient plate model. For more 

accurate analysis, they considered two scale parameters related 

to the nonlocal and strain gradient effects. Ebrahimi and Barati 

[134] developed a nonlocal strain gradient plate model for 

damping vibration analysis of viscoelastic modeled via a two-

variable shear deformation plate theory under hygor-thermal 

environments considering scale parameters and strain gradient 

effects. Ebrahimi and Dabbagh [135] investigated smart 

characteristics of waves propagating in a piezoelectric nanosize 

plate rested on an elastic medium including surface effects. 

They proposed a realistic simulation for the elastic medium by 

utilizing a three-parameter medium containing Winkler, 

Pasternak and damping coefficients. Furthermore, they 

examined both of the decreasing and increasing impacts of 

small scale influences in the framework of a nonlocal strain 

gradient theory (NSGT). They used Kirchhoff plate theory to 

derive Kinematic relations and then Hamilton’s principle in 

order to achieve Euler-Lagrange equations of piezoelectric 

nanoplates. Lu et al. [136] developed size-dependent Kirchhoff 

and Mindlin plate models to investigate the coupling effects of 

nonlocal stress, strain gradient and surface energy on the 

dynamic response of nanoplate. They used nonlocal strain 

gradient theory to capture nonlocal stress and strain gradient 

effects and incorporated the surface energy effects by surface 

elasticity theory. Rajabi and Hosseini-Hashemi [137] 

employed the nonlocal strain gradient elasticity theory for the 

free vibration analysis of first-order shear-deformable 

orthotropic nanoplates. They used multi-term extended 

Kantorovich method (MTEKM) in conjunction with the 

generalized differential quadrature method (GDQM to solve 

the equations of motion. They also introduced a modified 

Mindlin plate model by excluding the nonlocality in the shear 

constitutive equations. Barati [138] presented dynamic 

modeling and analysis of nanoporous inhomogeneous 

nanoplates using generalized nonlocal strain gradient theory 

(NSGT) with the consideration of both stiffness-softening and 

stiffness-hardening effects. He modeled nanoplate porosities 

based on a modified rule of mixture and subjected to an in-

plane harmonic load in hygro-thermal environments. They 

modeled the porous nanoplate according to a refined four-

variable plate theory with fewer field variables than in the first-

order plate theory. 

Sahmani and Aghdam [139] constructed a new size-

dependent inhomogeneous plate model to analyze the nonlinear 

buckling and postbuckling characteristics of multilayer FG 

composite nanoplates reinforced with graphene platelet (GPL) 

nanofillers under axial compressive load. To this purpose, they 

implemented nonlocal strain gradient elasticity theory into a 

refined hyperbolic shear deformation plate theory. They 

evaluated mechanical properties of the structure based on 

Halpin-Tsai micromechanical scheme. Sahmani et al. [140] 

introduced a functionally graded porous materials (FGPMs) 

reinforced with graphene platelets to improve mechanical 

properties and investigated the size-dependent nonlinear axial 

postbuckling characteristics of these structures. For this 

purpose, they used theory of nonlocal strain gradient elasticity 

incorporating both stiffness reduction and stiffness 

enhancement mechanisms of size effects applying to the 

refined exponential shear deformation plate theory. They 

studied three different patterns of porosity dispersion across the 

plate thickness. They then used an improved perturbation 

technique to capture the size dependencies in the nonlinear 

load-deflection and load-shortening responses of the reinforced 

FGPM micro/nano-plates and reported the results. Shahverdi 

and Barati [141] developed a general nonlocal strain-gradient 

(NSG) elasticity model for vibration analysis of porous nano-

scale plates on an elastic substrate as an application for 

nanomechanical mass sensors. They incorporated two scale 

coefficients to examine the vibration characteristics more 

accurately. They modeled Porosity properties via a modified 

power-law function and Mori–Tanaka model and derived the 

governing equations based on Hamilton's principle under 

hygro-thermal loading and then solved for hinged nanoplates 

via Galerkin's method. Xiao et al. [142] investigated the 

propagation behaviors of in-plane wave in viscoelastic 

monolayer graphene by employing nonlocal strain gradient 

theory. By solving the governing equation of motion derived 

via Hamilton's principle, they acquired closed-form dispersion 

relation between phase velocity and wave number and then 

discussed different effects such as wave number, material 

length scale parameter, nonlocal parameter and damping 

coefficient on in-plane wave propagation behaviors by 

conducting numerical studies. 

3.3. Nano-tubes, Nano-shells and nano-cone 

Adeli et al. [143] investigated free torsional vibration 

behavior of a nonlinear nano-cone made of homogeneous and 

isotropic materials, based on the nonlocal strain gradient 

elasticity theory. The cross-sectional area of this nano-cone 

was assumed to vary by a nonlinear function in the longitudinal 

direction.  

Barati [144] investigated the free vibrational behavior of 

porous functionally graded nanoshells in the framework of 

nonlocal strain gradient elasticity theory. A nonlocal parameter 

and a strain gradient parameter are employed to describe both 

stiffness reduction and stiffness enhancement of nanoshells. 

Porosities are evenly and unevenly distributed through the 

thickness of the nanoshell. First-order shear deformation theory 

and Galerkin’s method was used to obtain vibration 

frequencies.  

There are also other worthwhile articles that we did not 

scrutinize due to the large number of references [145-154]. 

4. Conclusion 

Many researchers have tried to develop non-classical 

elasticity theories. So, many researches were done on 

nanobeams, nanoplates, nanoshells, nanotubes, nanorods and 

etc. based on nonlocal elasticity, strain gradient theory, couple 

stress theory, surface effect and molecular dynamics. This 

article pays special attention to the mechanical behavior of 

nanobeams, nanoplates, nanotubes and nanorods in the 

framework of nonlocal and nonlocal strain gradient theories. 

Reviewing the articles in this area shows that a lot of work has 

been done in a recent year. That fact reflects the pace of 
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progress in nanotechnology. 

This review shows that most of the work carried out on the 

basis of nonlocal and nonlocal strain gradient theories has 

coincided with the principle of Hamilton. Results showed that 

the small scale effect and material length scale parameter 

cannot ignored for micro/nano scale materials. Unfortunately, 

little experimental work has been done on the field of 

nanomechanics, at the same time. 
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