تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,092,593 |
تعداد دریافت فایل اصل مقاله | 97,196,603 |
تحلیل حلقههای سنجه رسوبی فرسایش بینشیاری در رگبارهای پیاپی تحت شرایط آزمایشگاهی | ||
تحقیقات آب و خاک ایران | ||
مقاله 6، دوره 49، شماره 2، خرداد و تیر 1397، صفحه 293-302 اصل مقاله (911.45 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2017.228531.667645 | ||
نویسندگان | ||
محبوبه کیانی هرچگانی* 1؛ پری سعیدی2؛ سیدحمیدرضا صادقی3 | ||
1پژوهشگر پسا دکتری (تحت حمایت بنیاد ملی نخبگان) گروه مهندسی آبخیزداری، دانشکده منابعطبیعی، دانشگاه تربیت مدرّس و عضو انجمن آبخیزداری ایران | ||
2دانشآموخته دکتری گروه مهندسی آبخیزداری، دانشکده منابعطبیعی، دانشگاه تربیت مدرّس | ||
3استاد/ دانشگاه تربیت مدرّس | ||
چکیده | ||
رسوبنمودها و حلقههای سنجه رسوب بهعنوان ابزارهایی مهم و مناسب در تحلیل رفتار رسوب با تغییرات دبی و درک نقش کنترلکنندگی دبی در تولید رسوب در وقایع رگباری محسوب میشوند. از اینرو بررسی رفتار و تغییرات رسوب معلق طی رگبار و در قالب حلقههای سنجه رسوبی از اهمیت ویژهای در برنامهریزیهای مدیریتی برخوردار میباشد. بر همین اساس پژوهش حاضر با هدف تحلیل رسوبنمود و حلقههای سنجه رسوبی رگبارهای پیاپی در شرایط شبیهساز باران و پلات آزمایشگاهی در یک نوع خاک تهیهشده از منطقه کجور در استان مازندران برنامهریزی شد. به این منظور شبیهسازی آزمایشها در پلاتهای 6 × 1 متر در شیب 5 درصد و در شدتهای بارندگی 30 و 90 میلیمتر بر ساعت طی شش رگبار پیاپی بهوسیله شبیهساز باران مورد بررسی قرار گرفت. نتایج بیانگر افزایش عمق رواناب کل با افزایش تعداد رگبارهای پیاپی در شدت بارندگی 30 میلیمتر بر ساعت از 78/8 میلیمتر در رگبار اول به 05/15 میلیمتر در رگبار ششم و در شدت بارندگی 90 میلیمتر بر ساعت از 28/9 میلیمتر در رگبار اول به 03/11 در رگبار ششم بود. اما هدررفت خاک رفتار پیچیدهتری نسبت به عمق رواناب داشت بهنحویکه یک کاهش ناگهانی در هدررفت خاک در توالی چهارم بر خلاف بقیه توالیها رخ داد. در نهایت نتایج حاصل از حلقههای سنجه رسوبی در رگبارهای پیاپی تحت شدت بارندگی 30 و 90 میلیمتر بر ساعت نشاندهنده تنوع رفتاری رسوب خروجی در مقایسه با تغییرات دبی در قالب شکلهای مختلف حلقههای سنجه شامل ساعتگرد، پاد ساعتگرد و نیز مرکب بود. | ||
کلیدواژهها | ||
فرسایش بینشیاری؛ آبنمود؛ رسوبنمود؛ تغییرات زمانی؛ رگبار | ||
مراجع | ||
De Girolamo, A.M., Pappagallo G. and Porto. A. L. )2015(. Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). Catena, 128, 135–143. Gabet, E. J., Dunne, T. (2003). Sediment detachment by rain power, Water Resources Research, 39(1), ESG-1. Gholami, L., Sadeghi, S. H. R. and Khaledi, A. V. (2012). Storm-wise rating loops in Chehelgazi watershed of Gheshlagh dam. Iranian Water Resource Journal, 6, 29-36. (In Farsi) Kiani Harchegani, M, Sadeghi, S. H. R. and Asadi, H. (2017a). Inter-Storm variability of coefficient of variation of runoff volume and soil loss during rainfall and erosion simulation replicates. Ecohydrology, 4(1), 191-199. (In Farsi) Kiani Harchegani, M., Sadeghi, S. H. R. and Asadi, H. (2017c); Changeability of concentration and particle size distribution of effective sediment in initial and mature flow generation conditions under different slops and rainfall intensities. Iranian Journal of Water Engineering and Management, 9(2), 205-216(In Farsi) Kiani Harchegani, M, Sadeghi, S.H.R. Asadi, H (2018). Comparing grain size distribution of sediment and original soil under raindrop detachment and raindrop-induced and flow transport mechanism, Hydrological Sciences Journal, 63 (2), 312-323 Kinnell, P. I. A. (2005). Raindrop impact induced erosion processes and prediction: A review. Hydrological Processes, 19, 2815–2844. Kinnell, P. I. A. (2009). The influence of raindrop induced saltation on particle size distributions in sediment discharged by rain-impacted flow on planar surfaces. Catena, 78(1), 2-11. Mahdavi, M. (2002). Applied Hydrology, Tehran University Press. 2, 437. (In Farsi) Meyer, L. D. and Harmon, W. C., (1984). Susceptibility of agricultural soils to interrill erosion. Soil Science Society of America, 48, 1152-1157. Mostafazadeh, R., Sadeghi S. H. R. and Saddodin, A. (2015). Analysis of Storm-wise Sedimentgraphs and Rating Loops in Galazchai Watershed, West-Azerbaijan. Soil and Water Conservation Researches, 21(5), 175-190. (In Farsi). Nadal-Romero, E., Latron, J., Marti-Bono, C. and Regues, D. (2008). Temporal distribution of suspended sediment transport in a humid Mediterranean badland area: The Araguascatchment, Central Pyrenees. Geomorphology, 97, 3-4. 601-616. Nu-Fang, F., Zhi-Hua, S., Lu, L. and Cheng, J. (2011). Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China Geomorphology, 135, 158–166. Saeidi, P; Sadeghi, S. H. R. and Telvari, A. R. (2016). Simulation of sediment graph using hydrograph. Journal of Watershed Engineering and Management, 8(1), 28-41. Parsons, A. J. and Lascelles, B. (2000);Rainfall simulation in geomorphology. Earth Surface Processes and Landforms, 25(7): 679-689. Rovira, A. and Batalla, R. (2006). Temporal distribution of suspended sediment transport in a Mediterranean basin: The Lower Tordera (NE SPAIN). Geomorphology, 79, 58-71. Sadeghi, S. H. R., Kiani Harchegani, M. and Asadi, H. (2017). Variability of particle size distributions of upward/downward splashed materials in different rainfall intensities and slope. Geoderma, 290, 100-106. Sadeghi, S. H. R., Kiani Harchegani, H Asadi (2016); Splash particle size distribution along the experimental plot under different rainfall intensities and slopes. Iranian Journal of Water and Soil Researches, 47 (4), 657-664 (In Farsi) Sadeghi, S. H. R. and Kiani Harchegani, M. (2012). Effects of sand mining on suspended sediment particle size distribution in Kojour forest river, Iran. Journal of Agriculture Science and Technology, 14, 1637-1646. Sadeghi, S. H. R. and Singh, J. K. (2005). Development of a synthetic sedimentgraph using hydrological data. Journal of Agriculture Science and Technology, 7, 69-77. Sadeghi, S. H. R., Gholami, L., Khaledi, A. V. and Telvari, A. R. (2008a). Analyzing sedimentgraph data in Chehelgazi Watershed upstream Gheshlagh Dam. Iranian-Water Resource Research, 4, 3. 47-56. (In Farsi) Sadeghi, S. H. R., Mizuyama, T., Miyata, S., Gomi, T., Kosugi, K., Fukushima, T., Mizugaki, S. and Onda, Y. (2008b). Determinant factors of sediment graphs and rating loops in a reforested watershed. Journal of Hydrology, 356, 271-282. Sadeghi, S. H. R., Mizuyama, T., Singh, J. K. and Tofighi, B. (2009). Applicability of instantaneous unit sedimentgraph model in an Iranian large watershed. International Journal of Ecological Economics and Statistics™, 13, 9. 30-45. Saeidi, P. and Sadeghi, S. H. R. (2010). Analysis of observed sedimentgraphs and rating loops on storm basis in Educational Watershed of Tarbiat Modares University. Iranian Journal of Water and Soil Conservation, 17(1), 97-12. (In Persian) Sun, L., Yan, M., Cai, Q. and Fang, H. (2016). Suspended sediment dynamics at different time scales in the Loushui River, south-central China. Catena, 136, 152-16. Walling, D. E. and Webb, B. W. (1982). Sediment availability and the prediction of storm-period sediment yields. Recent developments in the explanation and prediction of erosion and sediment yield, IAHS Publication, 137, 327-337. Walling, D. E., Owens, Ph. N., Waterfall, B. D., Leeks, G. J. L. and Wass P. D. (2000). The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. Science of Total Environment, 251/252, 205-222. Wang, L., Shi, Z. H., Wang, J., Fang, N. F., Wu, G. L., Zhang, H. Y. (2014). Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: a case study of clay loam soil from the Loess Plateau, China, Journal of Hydrology, 512, 168-176. Williams, G. P. (1989). Sediment concentration versus water discharge. Journal of Hydrology, 111, 89-106.
| ||
آمار تعداد مشاهده مقاله: 468 تعداد دریافت فایل اصل مقاله: 305 |