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In this study, Back-propagation neural network (BPNN) and adaptive neuro-fuzzy inference system 
(ANFIS) methods were applied to estimate the particle size of silica prepared by sol-gel technique. 
Simulated annealing algorithm (SAA) employed to determine the optimum practical parameters of the 
silica production. Accordingly, the process parameters, i.e. tetraethyl orthosilicate (TEOS), H2O and NH3 
were introduced to BPNN and ANFIS methods. Average mean absolute percentage error (MAPE) and 
correlation relation (R) indexes were chosen as criteria to estimate the simulation error. Comparison of 
proposed optimum condition and the experimental data reveal that the ANFIS/SAA strategies are powerful 
techniques to find the optimal practical conditions with the minimum particles size of silica prepared 
by sol-gel technique and the accuracy of ANFIS model was higher than the results of ANN. Moreover, 
sensitivity analysis was employed to determine the effect of each practical parameter on the size of silica 
nano particles. The results showed that the water content and TEOS have the maximum and minimum 
effect on the particle size of silica, respectively. Since, water acts as diluent and synthesis of monodisperse 
silica in diluent solution will decrease the growth probability of nucleate, leading to a the lower silica 

1. Introduction 
Simulation is an effective technique for 

optimization of engineering process instead of 
laboratories trials with lower cost and times. The 
model enables us to a better understand on the 
behavior of a system as well as to design the new 
materials with unique properties. Soft computing 
methods help us to simulate the nonlinear 
phenomena and as a consequence predicting their 
future behavior. Artificial Neural Network (ANN) 
and Fuzzy Logic (FL) are the most common of 
soft computing methods due to their acceptable 
accuracy within the simulation [1-3]. The black 
box nature of ANN is the most drawback of its 
application on the simulation of such system. 

Therefore, a hybrid predictive model, i.e., adaptive 
neuro-fuzzy inference system (ANFIS) technique 
proposed to incorporate the desirable attributes 
and eliminates of disadvantages the both method, 
separately [3].

Silica opals are suitable candidates for Photonic 
Band Gap (PBG) crystal materials due to their 
unique properties in light manipulation. Thus, 
preparation of monodispersed silica is a hot 
topic issue for researchers [4]. Production of 
monodispersed silica from organic materials has 
been studied for decades using sol–gel technique 
[5], firstly proposed by Stober and Fink [6]. 
Consideration of various aspect of this category is a 
hot issue in our previous works [7-9]. According to 
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Fig. 1. Schematic representation of multilayer perceptron neural network. 
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Fig. 2. A Basic Artificial Neuron 
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Fig. 3: Typically variation of mean absolute percentage error as a function of activation functions combinations 

[21]. 
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Fig. 1- Schematic representation of multilayer perceptron 
neural network.

Fig. 2- A Basic Artificial Neuron.

Fig. 3- Typically variation of mean absolute percentage error as 
a function of activation functions combinations [21].

literatures, reaction temperature, TEOS, water and 
NH4 concentrations are some of the most effective 
parameters in sol–gel technique. The relations 
between these parameters are so complex and 
consequently applications of advanced computing 
methods for determination of the complexity are 
so beneficially. It was necessary to note that, to 
avoided from  the complexity of determination 
the effect of each practical parameter on the size of 
products, the effect of other affected parameters on 
particle size (e.g., ligands, stabilizers, feeding rate, 
temperature, reaction time) [10-12] were ignored 
and all of them adjusted to a constant value in this 
study.

The main contribution of this work are: (1) 
Feasibility study of the ANN and ANFIS simulation 
in estimation of particle size of silica prepared 
by sol-gel technique on the base of experimental 
data reported in literature [13]; (2) Comparison 
of the ANFIS and ANN models with each other; 
(3) Investigating the effect of TEOS, water, and 
ammonia concentrations on the particle size with 
ANFIS surface plot and scrutinizing the most 
affecting parameters by applying of sensitive 
analysis (4) Integrating the best model with 
simulation annealing algorithm (SAA) to optimize 
the sol-gel reaction with the minimum particle size 
of silica and (5) Verifying the predicted optimum 
condition.

2. Description of modeling and optimizing 
approach
2.1 Artificial neural network (ANN)

ANN represents an effective tool for the 
recognition a mapping relationship between input 
and outputs in a nonlinear and complex systems 

[14, 15]. The multi-layer Feed-Forward Neural 
Network with a back propagation-learning strategy 
is the most common structure in practical usages 
[16, 17]. This algorithm contain of input layer, 
output layer and one or higher layers with a lot of 
nodes, which enable the network to simulate the 
complexity between the practical parameters (Fig. 
1). 

The ANN training algorithm includes of three 
major steps: (1) Network training; (2) Network 
evaluating; (3) The back propagation strategy to 
create and update the connection weights. This 
step is repeated until the accuracy of the network 
maximizes and could successfully predict the 
output. The training data can be minimized by 
optimization the Neural Network structure and 
by selecting the appropriate input parameters. 
However, by increasing the complexity between 
input and output, the number of training data must 
be increased [18].

The basic principal of an artificial neuron in 
ANN architecture illustrated in Fig. 2, that takes 
output of neurons in the previous layer as input 
“x0”, multiples them with connection weights “w0”, 
adds a bias “b”, fed through a transfer function to 
generate a result which is the neuron output “a” 
[19]. The important activation transfer functions 
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Fig. 4. Typical ANFIS architecture. 
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Fig. 4- Typical ANFIS architecture.

that used for input-output fitting problems are log-
sigmoidal function, hyperbolic tangent sigmoid 
and linear function [20]. Typically, Fig. 3 shows 
the mean absolute percentage error as a function 
of various activation function combinations [21] in 
which (I) activation function for hidden layer are 
tansig (1), purelin (2) and logsig (3); (II) Activation 
function for output layer are Tansig (1), purelin (2) 
and logsig (3); (III) Training algorithm for back 
propagation is scaled conjugate gradient algorithm 
(SCG).

A combination of these functions enables the 
ANN to model the nonlinear problems. Equations 
1 and 2 are the hyperbolic tangent sigmoid and 
linear function, respectively. 
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To the best of our knowledge, application of tan-
sigmoid and linear transfer functions to regulate 
the weights and biases of the hidden layers as well 
as the output layer are so beneficially [22].

2.2. Fuzzy Logic (FL)
Artificial neural networks are the most common 

of soft computing. The ability of ANNs to create the 
knowledge on the base of limited number of trials 
is so beneficially for simulation of practical process 
[22, 23]. However, the ANN is a powerful technique 
when the output of process is more valuable than 
the relation between the practical parameters.

Fuzzy logic (FL) system utilizes human expertise 
in the form of fuzzy IF-THEN rules and is based 
on the Sugeno’s architecture instead of numerical 
values. The ‘‘IF’’ part deals with generating the 
membership functions (MF). The ‘‘THEN’’ section 

deals with to identify the resultant variables based 
on the input–output relationship by one of the least 
squared methods, which are represented as linear 
combinations, i.e. F1 = p1x + q1y + r1 of their inputs 
[24]. Sugeno fuzzy model is the most common of 
fuzzy IF–THEN rule as follows:
Rule 1 : IF x is A1 and y is B1 THEN

f1 = p1x + q1y + r1                                           (eq. 3)

Rule 1 : IF x is A2 and y is B2 THEN

f2 = p2x + q2y + r2                                           (eq. 4)

In which x and y are input variables, Ai and Bi 
are the fuzzy sets determined for x and y, pi and qi 
are the consequent parameter of ith rule and fi is the 
leaner consequent function.

2.3. Adaptive neuro-fuzzy inference system 
(ANFIS)

Application of both of ANN and FL to construct 
a relation between inputs and outputs as a function 
is named as ANFIS is a fuzzy inference system 
method [25]. The basic manner that ANFIS uses 
for learning is the back-propagation gradient 
descent, which determines the accuracy recursively 
from the output layer backward to the input 
nodes. This learning algorithm is similar the back-
propagation learning algorithm which used in the 
feed-forward neural networks [26]. The schematic 
representation of ANFIS illustrated in Fig. 4, 
include of five different layers in which each layer 
possesses several nodes and produce the inputs for 
the succeeding layer. 

In the fuzzy layer, i.e., the first layer, each node 
creates the membership rank for every fuzzy set 
(like as bad, middle and good) and determines 
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the type of MFs for ANFIS network. The layers 
2–4 relates to the fuzzy rules [27]. The fifth layer 
expresses the overall outputs as the summation of 
all fourth layer signals value. Important factors that 
have vital effect on the accuracy of ANFIS model 
include the type of fuzzy based rule, the number 
of MFs, and the types of their MFs. In this paper, 
Sugeno-type fuzzy inference systems were used 
for predicting size of monodisperse silica particles. 
Thereafter, different MF types (gbellmf, gaussmf, 
gauss2mf, pimf, dsigmf, psigmf) are employed to 
estimate the best model that minimizes the mean 
absolute percentage error (MAPE). 

2.4. Simulated annealing algorithm (SAA)
Recently, different strategies have been used 

to optimize the complex engineering problems. 
There is not unique strategy to optimize every 
problem. In present study, optimizers for the silica 
sol-gel process optimal design is proposed based 
on SAA. SAA is a random search methodology, 
which works on the base of simulation annealing 
process for a heat treatment of solid. The purpose 
of this methodology is minimizing the objective 
function (annealing energy) by examining of all 
points in data domain respect to their energy value, 
i.e., function value [28]. Probability function (eq. 
4) enables SAA to transfer from local minimum. 
As eq. 5, T indicates temperature and k shows the 
Boltzmann constant. Let the objective function 
value in a specific annealing step is represented by 
P(E) as following: 
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The procedure of SAA is given below. 
1. At the beginning of simulation, we start with an 
initial feasible point x0 and consider the iteration 
numbers K = 0 and k = 1; 
2. A new feasible point xk is set with a random 
number. Then f(xk) and ∆f = f(xk) - f(x0) is checked;
3. If ∆f value is lower than zero then xk is determined 
as the new best point x0 and go to step 4. Else, we 
set β value with random number that is  between 
0 and 1 and find the value for . If value of β is lower 
than p, then xk is determined as the new best point 
x0;
4. Let N shows the maximum number of trial 
points that are used in one iteration. If value of k is 
lower than N, then k = k + 1 and go to step 2. Else, 
go to step 5;
5. The process is finished when we have no 

acceptance after N trials. Otherwise, go to step 6;
6. If value of K is lower than the iteration limit, then 
decrease temperature by θ = τθ (τ shows a variable 
less than 1). In addition, we change K = K + 1, k = 1, 
and go to step 2. Else, the process is finished.

3. Experimental data collection
An important part of planning an experimental 

work is identifying the importance variables which 
affecting the practical condition. Bogush et al. 
[13] studied the control of size and mass fraction 
in preparation of monodisperse silica particles. 
They reported that the size of monodisprese silica 
particles is mainly a function of 3 factors, i.e., 
tetraethyl orthosilicate (TEOS) concentration in 
the range of 0.3-0.17 M, ammonia (NH3) content in 
the range of 0.5-3 M and deionized water (H2O) in 
the range of 0.5-23 M were used as inputs and silica 
particle size as output. The data used in this work 
contains of 50 data from [13] that shown in Table 
1. For training and testing each network, these data 
were randomly partitioning to the training and 
testing sections. Accordingly, 41 schedules were 
applied for training whereas 9 ones were used for 
testing. To increase the efficiency of networks, the 
input data was normalized using eq. 6:
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In which Xmax and Xmin are the maximum and 
minimum values of the independent variable X. 
Table 2 abbreviates the more appropriate models 
architecture in of ANN/ANFIS program modeling.

4. Results and discussion
4.1 Modeling development 

In this section, ANN/ANFIS models are designed 
to estimate the particle size of monodisprese silica. 
To find the optimum feed-forward neural network 
structure with one hidden layer, a program was 
developed in Matlab (version 2014.b) software by 
changing the number of nodes in hidden layer (1-
30) and training functions, i.e. scaled conjugate 
gradient (CGB), Levenberg Marquardt (LM) and 
Powell-Beale conjugate gradient (SCG). The ability 
of each model evaluated by mean absolute parentage 
error (MAPE) by the following expression: 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀⁡ = 1
𝐿𝐿⁡[⁡⁡∑ ⁡

𝐿𝐿

𝑖𝑖=1

|𝑇𝑇𝑖𝑖 ⁡⁡−⁡𝑃𝑃𝑖𝑖⁡|
𝑇𝑇𝑖𝑖

⁡] × 100 (7) 

 
 

𝑆𝑆𝑖𝑖⁡(%) = 1
𝑁𝑁∑(%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁡𝑖𝑖𝑖𝑖⁡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁡𝑖𝑖𝑖𝑖⁡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 )𝑗𝑗
× 100

𝑁𝑁

𝑗𝑗=1
 

(16) 

 

 

 

 

 

 

                  (eq. 7)

To find the relation between input and output 
parameters in hidden layer, Hyperbolic tangent 
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Table3: Results of ANN/ANFIS program modeling 
 

Specifications of ANN architecture 

ANN 
Configuration 

Transfer function 
in hidden layer 

Transfer function 
in output layer 

Training 
algorithm 

3-[21]-1 tan-sigmoid purelin LM 
 

Specifications of ANFIS architecture 

No. of MF for 
each input 

Type of MF 
for inputs 

Type of MF 
for output 

Training 
method 

2,2,3 dsigmf linear BP method 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2- Results of ANN/ANFIS program modeling

sigmoid transfer functions was employed [29]. 
Since the output values (12–858) had extended 
ranges, a linear activation function was selected for 
output layer enable the structure to produce values 
outside of -1 to +1.

During the training phase of ANFIS, various 
effective parameters, i.e., the number and type of 
membership functions for each input variables and 
output parameter as well as optimization method 
were tested. The optimum condition using the 
lowest MAPE as criterion was proposed based on 
Matlab programing. Cross validation was employed 
as the stopping criterion in training section to 
avoid from overtraining. Fig. 5 shows the program 
flowchart for ANN and ANFIS. 

Experimental data (target) and predicted value 
by ANIFS/ANN models are compared in Fig. 5. 
Accordingly, the accuracy of both the models is 
quite acceptable for training set while the testing 
value of ANFIS model shows higher accuracy (about 
97%) respect to the experimental data. Fig. 6 clearly 
shows that the used ANFIS model could be capable 
for prediction of particle size with a minimum error 
within the domain covered by the training pattern. 
Similar results have been observed in Table 3. Fig. 7 
explains the performance of the developed ANFIS 
model with the number of iterations for prediction 
of particle size. As shows, the relations between 
inputs and output are complex which emphasis 
on the necessity of iterations to minimize the root 
means square error during the training process.

The influence of practical parameter on the size 
of products is illustrated in Fig. 8. In addition, the 
surface plot is helpful to visualize required sol-gel 
parameters to achieve certain particle size. The 
reactant concentrations in sol–gel system had 
greatly affected the particles size. Due to the lower 
potential to increase the solid nuclei size during the 
precipitation in diluent solution, a smaller particle 
size can be produced in the lower concentration of 
[H2O], [TEOS] and [NH3]. Moreover, by decreasing 
the concentration of [H2O] as well as [TEOS], the 
rate of hydrolysis and condensation reactions as 
essential step for the silica synthesis decreased and 
consequently the formation of smaller particle size 

1 
 

 

 

Table 1: Data set of monodisperse silica particles [13]. 
 

No. TEOS (M) NH3 (M) H2O (M) Average 
diameter(nm) 

1 0.17 3 10.26 587.77 
2 0.17 0.5 7.58 288.89 
3 0.17 1 7.00 482.19 
4 0.17 1 10.00 456.86 
5 0.17 1 17.00 319.48 
6 0.17 2 9.13 701.38 
7 0.17 0.5 3.00 156.33 
8 0.17 0.5 5.00 246.24 
9 0.17 0.5 10.00 273.61 
10 0.17 0.5 12.00 284.12 
11 0.17 0.5 12.53 318.4 
12 0.17 0.5 14.54 268.83 
13 0.17 1.0 2.00 137.46 
14 0.17 1.0 3.00 279.00 
15 0.17 1.0 5.00 446.9 
16 0.17 1.0 8.00 460.71 
17 0.17 1.0 12.00 416.05 
18 0.17 1.0 14.00 373.09 
19 0.17 1.0 15.00 382.03 
20 0.17 1.0 19.00 272.17 
21 0.17 1.0 23.00 223.16 
22 0.17 2.0 5.10 614.01 
23 0.17 2.0 5.12 703.95 
24 0.17 2.0 7.12 635.21 
25 0.17 2.0 7.12 671.61 
26 0.17 2.0 14.11 493.14 
27 0.17 0.5 0.50 12.00 
28 0.17 0.5 1.00 27.00 
29 0.17 0.5 2.00 82.00 
30 0.17 2.0 16.12 383.71 
31 0.17 3.0 8.25 592.26 
32 0.17 3.0 8.25 637.23 
33 0.17 3.0 13.24 542.48 
34 0.17 3.0 15.25 441.62 
35 0.17 3.0 15.25 480.17 
36 0.17 3.0 17.26 407.15 
37 0.30 0.5 3.00 99.23 
38 0.30 0.5 5.00 281.86 
39 0.30 0.5 7.00 468.90 
40 0.30 0.5 12.00 361.76 
41 0.30 1.0 14.00 403.74 
42 0.30 2.0 7.14 855.73 
43 0.30 2.0 9.18 761.45 
44 0.30 2.0 9.13 858.15 
45 0.30 2.0 14.15 542.21 
46 0.30 2.0 15.16 553.31 
47 0.30 2.0 16.14 522.65 
48 0.30 0.5 10.00 440.66 
49 0.30 2.0 11.17 733.09 
50 0.30 3.0 13.21 630.02 

 
 
 

Table 1- Data set of monodisperse silica particles [13]



48

Mahdavi jafari M, J Ultrafine Grained Nanostruct Mater, 51(1), 2018, 43-52

6 
 

  

  
Fig. 6. Comparing the experimental data (target) and predicted target in testing and training phase using ANFIS/ANN models (The numbers 

on the circle and hexagonal are samples and those on the vertical axis are the particle size of the studied sol-gel conditions). 
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Fig. 6- Comparing the experimental data (target) and predicted target in testing and training phase using ANFIS/ANN models (The 
numbers on the circle and hexagonal are samples and those on the vertical axis are the particle size of the studied sol-gel conditions).

5 
 

 

Fig. 5. Development of a model to predict the silica particle size from sol gel process parameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experimental data
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0.1-0.9

Constructing 
model

Training and 
testing

Training and 
testing

Constructing 
model

Stop loops Stop loopsNo No

Best model 
(lowest MAPE)

Best model 
(lowest MAPE)

Compare MAPE of best 
models

Neurons in hidden 
layer 1-30

Tansig activation 
function for hidden 

layer

Purelin activation 
function for output 

layer

Training algorithm 
SCG-LM-CGB

MFs for each input: 
1-3

Type of Mf for each input: 
gbellmf-gaussmf-gauss2mf-

pimf-dsigmf-psigmf

Type of Mf for output: 
constant, linear

Type of training method: 
hybrid method, back 

propagation (BP) methodYesYes

Fig. 5- Development of a model to predict the silica particle size from sol gel process parameter.
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Fig. 7. The error lines of predicted particle size by ANFIS for training and testing phase 
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Fig. 8. Surface plot of ANFIS predicted particle size as a function of the reactant concentrations for [TEOS] = (a) 0.1 M; (b) 0.5 M; 

and (c) 0.9 M (i.e., the effect of two factors simultaneously on output have been drawn at fixed other factors). 

 

 

 

 

 

 

 

 

 

 

Fig. 7- The error lines of predicted particle size by ANFIS for training and testing phase.

Fig. 8- Surface plot of ANFIS predicted particle size as a function of the reactant concentrations for [TEOS] = (a) 0.1 M; (b) 0.5 M; and 
(c) 0.9 M (i.e., the effect of two factors simultaneously on output have been drawn at fixed other factors).3 

 

 
 

Table 4: Comparing of proposed particle size by ANN, ANFIS and experiments. 
 
 

Test no. TEOS (M) NH3 (M) H2O (M) 
Experimental 
particle size 

(nm) 

Predicted particle 
size by (nm) 

ANN ANFIS 
 

1 0.17 3.0 10.26 587.77 609.26 599.89 
2 0.17 0.5 7.58 288.89 301.70 270.34 
3 0.17 1.0 7.00 482.19 473.60 470.23 
4 0.17 1.0 10.00 456.86 438.93 466.96 
5 0.17 1.0 17.00 319.48 348.34 307.12 
6 0.17 2.0 9.13 701.38 611.50 664.93 
7 0.30 0.5 10.00 440.66 457.10 440.42 
8 0.30 2.0 11.17 733.09 732.16 726.66 
9 0.30 3.0 13.21 630.02 602.51 638.91 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3- Comparing of proposed particle size by ANN, ANFIS and experiments
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Fig. 9. Effect of input variables in silica particle size. 
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Table 5: Comparison of the experimental and predicted values for minimum particle size. 
 
 

TEOS (M) NH3 (M) H2O (M) Particle size (nm) 
   Predicted value Experiment value 

0.17 0.5 0.5 12.56 12 
 

Fig. 9- Effect of input variables in silica particle size.

Table 4- Comparison of the experimental and predicted values for minimum particle size

encouraged [30]. 
As shown (Fig. 8c), the particle size values 

are greatly affected by the [H2O] in a lower 
[NH3]. Moreover, the [NH3] concentration is the 
administrated factor on particle size when the [H2O] 
content of solution decreased. Accordingly, the 
presence of [H2O] and [NH3] significantly affected 
the size of products. Typically, for preparation of a 
distinct particle size distribution, the [H2O] value 
must be set at lower concentration while the [NH3] 
concentration changed in the operating range. 
The other possible strategy is to control [NH3] 
value at a lower concentration and set the [H2O] 
concentration in a defined domain. This reveals 
that the possibility of silica particle preparation in 
the sub-micron size by changing [NH3] and [H2O] 
values. It seems that the effect of TEOS is lower 
than others. To validate this result, the sensitivity 
analysis was applied to determine the relative 
significance of practical parameters on the size of 
products. Moreover, the sensitivity analysis enables 
us to decrease the number of input parameters that 
haven’t significant effect on the model performance 
as well as removing of unnecessary data collection 
and cost reduction. 

To apply the sensitive analysis, a step-by-

step technique was done on the trained ANN 
by changing each of the input parameter, one 
at a time, in a constant rate. Different constant 
rates (5, 10) were chosen in this paper. For every 
input parameter, the percentage was modified in 
the output as a result of the change in the input 
parameter. The sensitivity of each input parameters 
was computed by the following equation [22]:

1 
 

 

𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑡𝑡𝑡𝑡 ( 1
1 + exp⁡(𝑥𝑥)) 

(1) 

 

 

 

 

 

 

𝑓𝑓(𝑥𝑥) = 𝐵𝐵𝐵𝐵 (2) 

 
 

Rule 1 : IF x is A1 and y is B1       THEN  f1 = p1 x + q1 y + r1 (3) 
 
 
 
 

Rule 2 : IF x is A2 and y is B2       THEN  f2 = p2 x + q2 y + r2 (4) 
 
 

 

𝑃𝑃(𝐸𝐸) = exp⁡(− 𝐸𝐸
𝑘𝑘⁡𝑇𝑇

) (5) 
 
 
 
 

𝑋𝑋𝑛𝑛⁡ = ⁡0.8 × 𝑋𝑋⁡ − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

+ 0.1 (6) 
 
 
 
 
 
 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀⁡ = 1
𝐿𝐿⁡[⁡⁡∑ ⁡

𝐿𝐿

𝑖𝑖=1

|𝑇𝑇𝑖𝑖 ⁡⁡−⁡𝑃𝑃𝑖𝑖⁡|
𝑇𝑇𝑖𝑖

⁡] × 100 (7) 

 
 

𝑆𝑆𝑖𝑖⁡(%) = 1
𝑁𝑁∑(%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁡𝑖𝑖𝑖𝑖⁡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

%𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁡𝑖𝑖𝑖𝑖⁡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 )𝑗𝑗
× 100

𝑁𝑁

𝑗𝑗=1
 

(16) 

 

 

 

 

 

 

        (eq. 8)

Where Si (%) shows the sensitivity level of an 
input parameter and N (= 9) is the number of 
datasets used for sensitivity test. According to 
sensitivity analysis (Fig. 9), the water content and 
TEOS have the maximum and minimum effect on 
the particle size of silica, respectively. Since, water 
acts as diluent and synthesis of monodisperse 
silica in diluent solution will decrease the growth 
probability of nucleate and consequently decreased 
the particle size of precursor, leading to a lower 
silica particle size.

4.2 Optimization of process using SAA
In the previous section, it has been showed 

that the lowest error is belonging to the 2-2-3 
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Fig. 10. The flow chart of ANFIS integrated SAA. 

 

Start

Define fitness function S(x) 

Perform ANFIS simulation

SAA Fitness function evaluation

Satisfy the
termination

criterion

No

Report result

End

Yes

Updating solution
vectors

Set the initial parameters (x0, K, Tinit )

Process of SAA: Optimize the Solution Vectors

Fig. 10- The flow chart of ANFIS integrated SAA.

ANFIS structure with dsigmf MFs. Therefore, the 
optimized model can be set as objective function to 
minimize the size of monodisprese silica particles. 
The flowchart of finding an optimal process of 
ANFIS integrated SAA is illustrated in Fig. 10. For 
optimization problem the objective function is 
defined as

2 
 

Minimize  Particle⁡Size⁡ = 𝑓𝑓([𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇], [𝑁𝑁𝑁𝑁3], [𝐻𝐻2𝑂𝑂]) 

Subject to 0.17 ≤ [TEOS] ≤ 0.3 

0.5 ≤ [NH3] ≤ 3 

0.5 ≤ [H2O] ≤ 23 

 In SSA approach, Boltzmann annealing 
employed as annealing function that receives 
random steps, with size proportional to square 
root of temperature and exponential temperature 
update chosen as temperature updates function. 
The implementing of optimization program 
provided by the MATLAB commercial software 
tool. Simulated annealing algorithm is performed 
with the following settings: 

Initial point x0 = [0, 0, 0];
Initial temperature parameter (Tinit) = 450;
Number of cycles per temperature = 100;
Boltzmann constant K=10;

The comparison of ANFIS/SAA predicted and 
experimental values of particle size in Table 4 
reveals that this proposed algorithm is a powerful 
and interesting model in synthesize SiO2 by sol-gel 
process. The ANFIS/SAA approach proposed the 
TEOS concentration of 0.17 M, NH3 concentration 
of 0.5 M and H2O concentration of 0.5 M to prepare 
the minimum particle size of about 12.56 nm (Table 
4). As shown the minimum particle size of silica 
prepared at the lower concentration of reactants. 
Similar results have been reported according to the 
sensitivity analysis (Fig. 9).

 
5. Conclusions

This paper proposed ANN/ANFIS models for 
estimation of monodispersed silica particle size. 
Firstly, the training of network is performed using 
reported practical data set in literatures. According 
to the lowest value of MAPE as criteria, the best 
network is determined. Then the best model is 
integrated using simulation annealing algorithm 
(SAA) to achieve the optimal process parameters 
for minimization of particle size. In summary:
1. The accuracy of ANFIS model was higher than 
the results of ANN;
2. The H2O content in initial solution is the 
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administrated parameter on determination of the 
products particle size, while the concentrations of 
TEOS and NH3 have lower effect on outputs;
3. The combination of proposed ANFIS/SAA 
optimization method is able to predict the 
appropriate combinations of silica sol-gel process 
parameters for particle size minimization with high 
accuracy. 
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