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1. Introduction 

Pipes are used for transmission of liquid, gas fluids or 

multiphase fluids in all industries. The investigations of flow 

instability inside pipes is one of the challenging issues in fluid 

mechanics. Pipe poiseuille flow at the first has been studied 

experimentally by Osborne Reynolds at the end of the 19th century 

[1]. He found that the sensitivity to disturbances could be 

characterized by one non-dimensional number Re (Reynolds 

number). For Reynolds numbers lower than about 2000, and more 

than 2300 it is observable that the flow is stable to all disturbances.  

Laminar flow could be maintained at higher Reynolds numbers by 

carefully controlling the external disturbances of the flow. The 

laminar flow will be unstable by increasing the Reynolds number 

in transition zone because of flow disturbances [2]. Mechanism of 

flow instability and transition to turbulence and physics of flow 
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instability and turbulent transition in shear flows had been studied 

by Hua-Shu Dou [3, 4]. Experimental studies of transition to 

turbulence in a pipe had been done by Mullin [5] and background 

information as well as more details may be found in the recent 

reviews Kerswell [6] and Eckhardt [7]. In this study after obtaining 

the equations related to instability of single phase fluid flow inside 

horizontal pipe, these equations will be solved. To solve these 

equations, the Eigenvalue equations related to instability, several 

methods have been used by the researchers with special strength 

and weakness. In order to simplify the numerical solving, we 

imagine that the fluid flow inside the pipe is symmetrically axial. 

After obtaining the equations related to instability of flow and 

boundary conditions governing it, the equations will be solved 

using Chebyshev Tau-QZ algorithm and the obtained results will 

be validated. 
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In this article the instability of single phase flow in a circular pipe from 

laminar to turbulence regime has been investigated. To this end, after 

finding boundary conditions and equation related to instability of flow in 

cylindrical coordination system, which is called eigenvalue Orr Sommerfeld 

equation, the solution method for these equation has been investigated. In 

this article Chebyshev polynomial Tau-QZ algorithm has been selected for 

the solution technique to solve the Orr Sommerfeld equation because in this 

method some of complex terms in the instability equation in cylindrical 

coordination will be appeared. After finding Orr Sommerfeld parameters 

related to Chebyshev polynomial Tau-QZ algorithm the solution have been 

done for Re=5000 and Re=1000, then the results had been compared with 

the results of valid references where other methods had been used in them. 

It have been observed that the use of Chebyshev Tau-QZ algorithm has 

higher accuracy concerning the results and it also has a higher accurate 

technique to solve the Orr Sommerfeld instability equations in cylindrical 

coordination system. 

 

Keywords: 

Single phase flow 

Turbulence 

Instability equations 

Eigenvalue equations 

Chebyshev polynomial 

 



A.R. Noghreh Abadi, A.R. Daneh Dezfuli, F. Alipour 

136 

 

 

2. Governing equations and numerical method 

2.1. Obtaining equations governing the stability of flow inside the 
pipe 

In order to obtain the governing equations for the instability 

of single-phase flow in the horizontal pipe with fully developed 

unidirectional flow regime and axial symmetric flow (𝑣𝜃 = 0), 

the continuity and momentum equations in cylindrical 

coordination system (𝑟, 𝜃, 𝑥) has been illustrated in Fig.1 as 

follow [8]: 

 

Figure 1. The components in cylindrical coordination system 
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With consideration of disturbances are related to pressure and 

velocity according to Mellibovsky, Fernando, et al. [9], the 

terms related to these disturbances will be defined as follow: 
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 Substituting equations (4) in (1), (2) and (3) and regardless of 

high order terms, we will have:  
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Now, using flow function, we will define the velocity 

fluctuations as below:    
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Which    is stream function. By substituting equations (8) and 

(9) in equations (6) and (7), we have:  
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In above equations, the terms related to pressure should be 

eliminated. Thus, one can write:  
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(13) 

Now, if we obtain derivation of equation (12) to x and 

derivation from equation (13) to r than  put the right hand sides 

of equations in equal, the obtained an equation which is 

independent of pressure term. By defining stream function  

as disturb term [10]: 

      , , expx r t r i x ct      (14) 

where 𝛼 is a real wave number and 𝑐 is the complex wave 

velocity 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖. The real part of c gives the phase velocity 

of the wave, while the imaginary part of 𝛼𝑐 represents the 

growth rate of disturbances (for unstable flows 𝐼𝑚(𝛼𝑐) > 0). 

By subsiding equation (14) in the equation obtained from 

removing of pressure term in equations (12) and (13), it could 

be shown that 𝜑(𝑟) function will be true in the following 

equation [11]:   
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where: 
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Equation (15) is similar to Orr-Somerfeld equation and this 

equation is instability equation for the flow in the pipe. This 

equation is valid for the fully developed flows. In the center of 

pipe (𝑟 = 0), equation (15) has a singular point. Thus, we 

should confining 
𝜑

𝑟
 and 

𝜑′

𝑟
 terms at  𝑟 

         
→   0. It is provable that 

velocity profile in the circular pipe is in the form of:  

   21 0 1U r r r     (16) 

 

Thus, the last term of equation (15) will be zero (
𝑈′

𝑟
)′ = 0 , and 

the boundary conditions will be defined according to Sexl [10] 

as follow: 

(17) , 0 0,1r     

 

In this study, in order to solve equation (15) and obtain 

eigenvalue c, Chebyshev Tau – QZ algorithm has been used. 

The reason for using this method is because it is simple method 

for solving the problems in cylindrical or circular geometries 

where terms such as (
𝑚

𝑟
)
𝑑

𝑑𝑟
 exist [12].  

2.2 Chebyshev Tau – QZ solution algorithm for solving O-S 

equation 

According to Garder et al. [13] method, we consider: 
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In order to solve O-S equation, concerning the existence of 

fourth order terms, we could write:  
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The above expression makes it possible for O-S equation to 

yield an equation for 𝜑0, … , 𝜑𝑁+1with multiplication by Ti to 

N+1 system. To see this definition from differential operator, 

we have: 
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In order to write the above equation for Chebyshev Tau – QZ 

algorithm, we write equation (21) as follow according to Fox 

[14]: 
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where 𝜏𝑖 denote tau coefficients. We take inner product of 

equation (22) by 𝑇𝑖  for 𝑖 = 0, … , 𝑁. Inner product with 𝑇𝑖  for 

𝑖 = 𝑁 + 1,… ,𝑁 + 4 leads to four equations for Tau 

coefficients. Four remained condition are obtained from 

boundary conditions (17) and since 𝑇𝑛
′(±1) = (±1)𝑛+1𝑛2, we 

have: 
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Due to the way the terms split in the discretization of (15) for 

the condition where 𝑈 = 1 − 𝑟2,  it is better the equations (23) 

will be written as follow:  
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In this condition, the obtained matrix can be divided into two 

sections including 𝜑𝑖, 𝑖 even and 𝜑𝑖, 𝑖 odd. Equation (24) for 

 𝜑𝑁+𝑗 ,   𝑗 = 1,2,3,4 as linear combination of 𝜑0, … , 𝜑𝑁 can be 

solved. The target is obtaining eigenvalues in form of 𝐴𝑋 =

𝜎𝐵𝑋 which is a eigenvalue problem where 𝑋 = (𝜑0, … , 𝜑𝑁) 

and 𝐴 is a 𝐷2matrix and 𝐵 is such that the results will be non-

singular.  

Since at D2 condition in Chebyshev Tau – QZ algorithm for 

Orr-Somerfeld problems has high accurate results and no 

spurious eigenvalues, we could write O-S equation in two 

following:  
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By writing the equations as follow: 
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(27) 

 
2

0

2

0

( )

N

i i

i

N

i i

i

T r

X T z

 


















 

and by multiplication of each of the above equations by Ti 

for 𝑖 = 0, … . . , 𝑁, equation (26) will be solved. The problem 

starts from the point where all boundary conditions are written 

based on 𝜑i and there are no constraints for 𝜒𝑖  so that rows of 

boundary conditions 𝜑𝑁+1, 𝜑𝑁+2, 𝜒𝑁+1, 𝜒𝑁+2obtained from the 

highly accurate results and no spurious eigenvalues result of 

the matrix D2 could be eliminated.  

The boundary conditions should be considered as a row inside 

the matrix which is done by Grander et al who obtained a 

system in form of four first order equations. A  𝐷2 method for 

solving equations (15) and (17) is as follow: 

along with: 
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(29) 

where P is Chebyshev matrix shown by 𝑟2 is 𝐴 = 𝐴𝑟 + 𝑖𝐴𝑖 and 

𝐵 = 𝐵𝑟 + 𝑖𝐵𝑖  (P is a matrix that is obtained by writing 𝑟2 =
1

2
(1 + 𝑇2(𝑟))and then the inner product (𝑇𝑖 , 𝑟

2𝜑) has been 

obtained, 𝐵𝐶1 and ….𝐵𝐶4. Rows define boundary conditions 

on 𝜑𝑛and for O-S equation. In this condition, O-S equation is 

written as four following equations:   
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Where 𝐿𝑖specifies operators and is 𝑌 = (𝜑, 𝑎, 𝛽, 𝛾). In this 

case:  
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In following, the study of the obtained answers will be dealt 

with.  

 

3. Numerical results 

 

For the validation of numerical solution for single- phase fluid 

flow inside the axial symmetric fluid flow pipe with  Re=5000 

and Re=10000 with =1 the results was compared by solution 

proposed by Davey-Darzin [15]. As it is observed, the obtained 

response for performed numerical solution on drawing the 

graph based on 𝑐𝑟 , 𝑐𝑖  is in full conformity with the above 

results proposed by Davey-Darzin.  

     As said before 𝑐 is the complex wave velocity 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖 . 

The real part of c gives the phase velocity of the wave (which 

must be positive), while the imaginary part of 𝛼𝑐 represents the 

growth rate so if the Im(𝛼𝑐) is negative its means that the flow 

is stable. 

     Concerning the results obtained for numerical solution for 

Re=5000 and =1, it could be observed that in −1 ≤ 𝑐𝑖 ≤
−0.4, the wave velocity 𝑐𝑟value will remain fixed. At 𝑐𝑖 < −1 

area, the 𝑐𝑟values in respect to 𝑐𝑖 extend in right side with angle 

of 45 and in left side with angle of 30 and in 𝑐𝑖 > −0.3 , 

𝑐𝑟values in respect to  𝑐𝑖 grows in right side with angle of 60 

and in right side with angle of 30. 

     The obtained results of numerical solution for 𝑅𝑒 = 10000 

and  α = 1, indicate that the obtained results from Davey and 

Darzin solution has dispersion of the results of solution; this is 

while the obtained solution in this problem conform to the real 

expected conditions. The same as the result obtained for 

Re=5000, it could be seen that in upper part of right side graph, 

it extends with angle of 45 and in left side with angle of 30.  

 

 

 

 

 

 

Fig 2. The comparison of numerical solution with Re=5000 and = 1 
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4. Conclusion  

The use of Chebyshev polynomial can be used as the 

appropriate solution for solving the Eigenvalue problem of 

stability equation of single-phase fluid flow instability 

inside the pipe. As could be seen in figures 2 and 3, the 

obtained results based on this solution have higher 

accuracy with compare to the results obtained in validation 

references. 
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