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1. Introduction 

In many industrial equipments, such as steam generators in 

nuclear and fossil power plants, condensers, and boilers, there are 

two phases of fluids, the liquid and the gas phase, flowing 

simultaneously. Understanding of two-phase flow dynamics is 

therefore of great importance in design, analysis and maintenance 

of these types of equipments. 

Among two-phase flow problems, motion of rising bubbles 

due to gravity force is one of the most important and complicated 

phenomena, which exact understanding of its dynamics and 

accurate simulation of the interface forces, can be useful for a 

better design and development of the corresponding industrial 

equipments. Hence, dynamics of rising bubble is one of the most 

important topics in many experimental and numerical researches. 

Clift et al [1] conducted an experiment and derived some 

correlations, which was reviewed and modified later by Bhaga 

and Weber [2]. Motion of a rising bubble in viscous liquid due to 

gravity can be classified into several regimes. A chart of bubble 

shapes known as Grace diagram, is shown in Fig. 1 (Grace et al 

[3]). 

As Figure 1 shows, bubble shape is determined by two 

important non-dimensional numbers called Eotvos (Eo) or Bond 

(Bo) and Morton (Mo), which are defined as follows: 

(1) Eo = Bo =  
g∆ρd0

2

σ
 

(2) Mo =  
g∆ρμl

2

σ3ρl
4  

In the above equations, g is the gravitational acceleration, d0 

is the initial diameter of bubble, σ is surface tension, μl and ρl are 

liquid viscosity and density, respectively and ∆ρ is the density 

difference between liquid and gas phases. 

Moreover, interaction of multiple bubbles is of a particular 

interest for two-phase flow researchers, where many studies are 

conducted on this subject. Some recent researches have been 

performed by Watanabe et al [4], Balcázar et al [5], Islam [6], 

who used Molecular Dynamics (MD) method, Level Set (LS) 

method, and Volume of Fluid (VOF) technique, respectively, to 

simulate and study the interaction dynamics of two bubbles. 

Lattice Boltzmann Equation (LBE) methods have also a 

desirable capability to simulate fluid dynamics and have acquired 

an increasing growth during recent decades. Various problems of 

fluid dynamics such as unsteady flows, phase separation, 

evaporation and condensation, cavitation, heat transfer, and also 

fluid-surface interaction problems can be simulated using lattice 

Boltzmann models. As some recent studies, researches of 

Hassanzadeh et al [7-8], Ghafouri and Hassanzadeh [9] and 

Dadvand [10-11] can be mentioned.  
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Nomenclature 

Bo Bond number 

C concentration (or composition variable) 

D interface thickness 

cs  lattice sound speed 

d0 initial diameter of bubble 

Eo Eotvos number 

E0 bulk energy 

eα particle speed 

F force term 

Fext external force (gravitational force) 

fα particle distribution function 

fα
eq

 equilibrium particle distribution function 

g gravitational acceleration 

gα pressure distribution function 

g̅α modified pressure distribution function 

hα composition distribution function 

h̅α modified composition distribution function 

lu lattice length unit 

M mobility 

Mo Morton number 

mu lattice mass unit 

p1 hydrodynamic pressure 

T lattice time 

T̅ specific time 

T∗ non-dimensional time 

t time 

tu Lattice time unit 

u Velocity 

∆ρ density difference 

λ relaxation time 

μ chemical potential 

μl liquid viscosity 

ρg gas density 

ρl liquid density 

σ surface tension 

τ non-dimensional relaxation time 

There are several lattice Boltzmann models for two-phase 

flow simulation; in 1990s, the first decade of multiphase lattice 

Boltzmann methods application, several models were introduced, 

usually classified into four categories of chromodynamic models 

(Gunstensen et al [12], Grunau et al [13]), pseudo-potential 

models (Shan and Chen [14-15], Shan and Doolen [16-17]), free 

energy models (Swift et al [18-19], Orlandini et al [20]) and 

models based on inter-molecular interaction (He et al [21-23], 

Zhang et al [24-25], Zhang [26]). 

Attempts continued in the next decade (2000s) to develop 

two-phase lattice Boltzmann models and to achieve higher 

density ratios. Of such studies, models developed by Inamuro et 

al [27], Lee and Lin [28] and Zheng et al [29] can be mentioned. 

Dynamics of multiple bubble interaction has also been studied 

in the past by different researches. Takada et al [30] used a model 

developed based on free energy method and simulated motion of 

one and two rising bubbles. Their results complied with the VOF 

simulated results and they managed to simulate the behavior of 

two merging bubbles. 

 
Figure 1. Diagram of bubble shapes at various regimes 

Gapta and Kumar [31] simulated the motion of two and three 

bubbles due to gravity using a potential model. They simulated 

two linear and staggered alignments of bubbles and showed that 

with an increase in Eotvos number, the former bubble undergoes 

larger deformations and due to the wake behind, the bubbles 

merge finally. 

Based on free energy model, Cheng et al [32] developed a 

model to simulate bubble-bubble interaction and studied the 

effect of density ratio and initial bubble configuration on flow 

field and coalescence of bubbles. They showed that in the two 

bubble configuration with the same diameter, while the former 

bubble behaves as an isolated bubble before merging, the trailing 

bubble is entrained by the leading one and experiences obvious 

deformation as it enters the wake region of the leading one. The 

shape evolution of the trailing bubble is different for high and 

low density ratios. However, for two rising bubbles with different 

sizes, the larger bubble always has a strong effect over the 

smaller one for any initial configuration. 

Yu et al [33] developed an adaptive lattice Boltzmann model 

to simulate a pair of bubbles with spherical or ellipsoidal shapes 

under different configurations and rise velocities. It was shown 

that both attractive and repulsive interactions can be observed in 

the simulations depending on the relative position and the 

Reynolds number. They also simulated a group of 14 bubbles and 

investigated the effects of the bubble shape and Reynolds number 

on the spatial distribution of the bubbles. 

Shu and Yang [34] used a lattice Boltzmann method to solve 

the phase-field model and could accurately capture the interface 

evolution under different flow conditions and simulated the 

behavior of a single bubble, a bubble pair, and a bubble swarm. 

One of the strongest lattice Boltzmann two-phase models is 

Lee model. Lee and Lin [28] proposed their two-phase model in 

2005 with complete discretization and validation for the first 

time. In 2006, Lee and Fischer [35] studied the elimination of 

parasitic current in Lee model. Yet, wall boundary condition was 

not considered in the model. In 2008, Lee and Liu [36] examined 

wall boundary condition in Lee model. The LBE simulations of 

the contact line are typically contaminated by small but strong 

counter-rotating parasitic currents near solid surfaces. They 
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found that these currents can be eliminated to round-off if the 

potential form of the intermolecular force is used with the 

boundary conditions based on the wall energy approach and the 

bounce-back rule. In 2009, Lee [37] investigated the effects of 

incompressibility on the elimination of parasitic currents in his 

model. In 2010, Lee and Lin [38] presented a better expression of 

Lee model and simulated a droplet impact to a solid surface. In 

2010 and 2011, Amaya-Bower and Lee [39-40] considered the 

gravity force in the Lee model for the first time. Later on, Lee 

model was developed, extended, and applied to various two-

phase problems by other researches such as Taghilou and 

Rahimian [41], Mirzaie Daryan and Rahimian [42], Haghani and 

Rahimian [43], Farokhirad et al [44], and Fakhari et al [45].  

In the present paper, motion dynamics of a nine bubble group 

under the effect of gravity is investigated by Lee model for the 

first time. For this aim, after validation of the developed code 

with some standard problems, several results of multiple bubble 

dynamics are presented and discussed. 

2. Modeling 

2.1. Two-phase Lattice Boltzmann Equations 

Discrete Boltzmann equation with force term takes the 

following form (He et al [21]): 

(3) 

Dfα

Dt
= (

∂

∂t
+ eα. ∇) fα

= −
1

λ
(fα − fα

eq
) +

1

cs
2

(eα − u). FГα 

The force term is obtained by determining the non-ideal gas 

effects as follows: 

(4) F = ∇ρcs
2 − ∇p1 − C∇μ(C) + Fext 

with C being the concentration parameter and p1 the 

hydrodynamic pressure. External force (gravitational force) is 

calculated from to the equation below: 

(5) Fext = (ρl − ρg)g 

where g is the gravitational acceleration and the subscript g 

denotes the gas phase. The thermodynamic pressure is calculated 

from the Legendre equation. 

(6) p0 = C
∂E0

∂C
− E0 

where E0(C) ≈ βC2(C2 − 1) is the bulk energy. In eq. (4), μ is 

the chemical potential and is calculated from μ = μ0 − κ∇2C. 

The classical part of the chemical potential (μ0) is the derivative 

of E0 with respect to C: 

(7) μ0 =
∂E0

∂C
 

The parameters β and κ are related to the surface tension (σ) 

and the interface thickness (D) and are calculated as follows: 

(8) β =
12σ

D(ρl − ρg)4
 

(9) κ =
3Dσ

2(ρl − ρg)2
 

Lee [37] used two distribution functions g and h for the 

pressure and the composition evaluation equations, respectively. 

 gα = fαcs
2 + (p1 − ρcs

2)Гα(0) 

(10) 

(11) hα = (
C

ρ
) fα 

where Гα(u) = fα
eq

/ρ. Taking a total derivate from the two 

above equations gives: 

(12) 

∂gα

∂t
+ eα ∙ ∇gα = −

1

λ
(gα − gα

eq
) + (eα − u) ∙ 

     [∇ρcs
2(Гα − Гα(0)) + (−C∇μ + Fext)Гα] 

(13) 

∂hα

∂t
+ eα ∙ ∇hα = −

1

λ
(hα − hα

eq
) + (eα − u) ∙ 

     [∇C −
C

ρcs
2

(∇p1 + C∇μ − Fext)] Гα + ∇

∙ (M∇μ)Гα 

in which M is the mobility M = 0.02/β. The equilibrium 

distribution functions are given by: 

 

(14) 
gα

eq
= tα[p1 + ρcs

2(
eα. u

cs
2

+
(eα. u)2

2cs
2

−
(u. u)

2cs
2

)] 

(15) hα
eq

= tαC[1 + (
eα. u

cs
2

+
(eα. u)2

2cs
2

−
(u. u)

2cs
2

)] 

To facilitate the computation, the modified distribution 

functions g and h are applied [27]. 

 

(16) 

g̅α = gα +
1

2τ
(gα − gα

eq
) −

δt

2
(eα − u) ∙ 

          [∇ρcs
2(Гα − Гα(0)) + (−C∇μ + Fext)Гα] 

(17) 

g̅α
eq

= gα
eq

−
δt

2
(eα − u) ∙ 

          [∇ρcs
2(Гα − Гα(0)) + (−C∇μ + Fext)Гα] 

(18) 

h̅α = hα +
1

2τ
(hα − hα

eq
) −

δt

2
(eα − u) ∙ 

          [∇C −
C

ρcs
2

(∇p1 + C∇μ − Fext)] Гα 

(19) 

h̅α
eq

= hα
eq

−
δt

2
(eα − u) ∙ 

          [∇C −
C

ρcs
2

(∇p1 + C∇μ − Fext)] Гα 

By taking a second-order integration in time, the LBE for the 

pressure and composition equations are summarized as follows: 

(20) 

g̅α(x + eαδt, t + δt) − g̅α(x, t) = 

          −
1

τ + 0.5
(g̅α − g̅α

eq
) + δt(eα − u) ∙ 

          [∇ρcs
2(Гα − Гα(0)) + (−C∇μ + Fext)Гα]|(x,t) 

(21) 

h̅α(x + eαδt, t + δt) − h̅α(x, t) = 

           −
1

τ + 0.5
(h̅α − h̅α

eq
)(x, t) + δt(eα − u) ∙ 

           [∇C −
C

ρcs
2

(∇p1 + C∇μ − Fext)] Гα|(x,t) 

          +δt∇. (M∇μ)Гα|(x,t) 
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The macroscopic variables can be calculated using the 

equations below: 

(22) C = ∑ h̅α

α

+
δt

2
∇ ∙ (M∇μ) 

(23) u =
1

ρcs
2

∑ eαg̅α

α

−
δt

2
(C∇μ + Fext) 

(24) p1 = ∑ g̅α

α

−
δt

2
u ∙ ∇ρcs

2 

The density and relaxation time are given by: 

(25) ρ = Cρl + (1 − C)ρg 

(26) τ = Cτl + (1 − C)τg 

Which are dependent to time and position. 

2.2. Implementation 

Implementation of the model is done in MATLAB software. 

Similar to almost all LBM codes, the present code includes the 

main steps shown in Figure 2 and some more details of model 

implementation are depicted in Figure 3. Periodic boundary 

condition is applied to both vertical and horizontal walls. 

3. Results and Discussion 

3.1. Validation 

In this section, validation of our code results is performed by 

analysis of some standard problems such as bubble relaxation, 

merging of two bubbles or two droplets, and a single rising 

bubble. 

3.2.1. Bubble Relaxation 

A common test for evaluation of a two-phase flow solver 

is bubble or droplet relaxation. For this purpose, a square 

bubble with 40 lattice unit width is placed at the center of a 

101×101 computational domain and is relaxed. In this 

problem periodic boundary condition is used and density ratio 

is set to 25. 

Time history of bubble geometry is depicted in Figure 4. 

After about 5000 cycles, bubble forms a circle and preserves 

its circular shape. 

 

 

 

Figure 2. Main flowchart of the Present Program 

 
Getting Input Data 

Get domain and bubble data: domain length and width, diameter and initial position of bubbles 

Get wall boundary flag: 0:Periodic , 1:Wall 

Get g̅ and h̅  differentiation Method: ‘CD’ : Central,  ‘MD’ : Mixed 

Get fluid data: density, viscosity, surface tension 

Get other data: gravitational acceleration, interface thickness, end time, export data condition, etc. 

Initialization 

Initialize distribution functions for all lattice nodes: g̅α = g̅α
eq

  ; h̅α = h̅α
eq

 

Initialize macroscopic variables for all lattice nodes: C, u, p, μ 

Calculate derivatives of macroscopic variables: ∇C , ∇2C ,∇μ, ∇ρ, ∇p, … 

endRepeat from T=1 to T 

Evaluating Macroscopic Variables 

Calculate macroscopic variables for all lattice nodes: C, u, p, μ 

Calculate derivatives of macroscopic variables: ∇C, ∇2C, ∇μ, ∇ρ, ∇p, … 

Collision 

Calculate post-collision g̅α using Eq. 20 

Calculate post-collision h̅α using Eq. 21 

Streaming 

Stream distribution functions: g̅ and h̅ 

Applying B.C.s 

Apply periodic boundary condition at walls 

Figure 3. The program pseudo-code 
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T=1000 T=500 T=100 T=0 

    
T=10000 T=5000 T=2500 T=1500 

Figure 5. Summation of composition vs. time in bubble relaxation 

test case 
 Figure 4. Time history of bubble geometry in bubble relaxation problem; 

  𝜌𝑙 = 1 
𝑚𝑢

𝑙𝑢3
, 𝜌𝑔 = 0.04 

𝑚𝑢

𝑙𝑢3
 ,  𝜇𝑙 = 0.167 

𝑚𝑢

𝑙𝑢.𝑡𝑢
 and  𝜇𝑔 = 0.0067 

𝑚𝑢

𝑙𝑢.𝑡𝑢
 

 

(a) 

    
 T=5000 T=400 T=50 T=0 

(b) 

    
Figure. 6. Bubble Geometry Changes in Two Bubble Coalescence Problem; (a) Jain et. al.[46]; (b) Present Model 

 

(a)       
 T=20000 T=5000 T=2000 T=500 T=250 T=0 

(b) 
      

Figure 7. Droplet geometry changes in two droplet coalescence problem; (a) Xing et. al.[47]; (b) present model 

Changes of summation of composition variables in time are 

shown in Figure 5, which demonstrates mass conservation and 

convergence of the model for this test case. Mass conservation 

errors are less than 0.1%. 

3.1.2. Merging Bubbles and Droplets 

More validation is conducted to prove the accuracy of the 

developed two-phase flow code. In this step, two merging 

bubbles or droplets are simulated. For this purpose, two bubbles 

with 38 lattice unit initial diameter are placed next to each other. 

Other conditions are set similar to Jain et al [46], which are 

200×200 computational domain, density ratio of 40, kinematic 

viscosity ratio of 6.5, and periodic boundary condition in all 

directions. Time history of bubble shape is illustrated in Figure 6 

in comparison with the results of Jain et al [46].A similar 

problem for merging droplets is also analyzed, in which two 

droplets with similar conditions to Xing et al [47] are released 

next to each other. Time history of the droplet geometry in 

merging process is depicted in Figure 7 and is in good agreement 

with results of Xing et al [47]. 

Changes of summation of composition variables in time are 

shown in Figure 8, which demonstrates mass conservation and 

convergence of the model for merging bubbles and droplets test 

cases. 

3.1.3. Single Rising Bubble 

Rising of a single bubble due to gravity was simulated in the 

previous validation test case. As mentioned in the Introduction 

section, research of Bhaga and Weber [2] is one of the basic 

references in this area, and is usually referred to for verification 

of numerical analyses of single rising bubble, where several 

conditions of non-dimensional numbers have been tested. In this 

sub-section, four different conditions are selected, analyzed, and 

compared as illustrated in Figure 9. Bubble diameter and mesh 

size are 40 and 160×200 lattice unit, respectively. 
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(a) (b) 

Figure 8. Summation of composition vs. time for merging bubbles (a) and merging droplets (b) 

 

 Eo = 17.7 

Mo = 711 

Eo = 116 

Mo = 266 

Eo = 116 

Mo = 5.51 

Eo = 115 

Mo = 4.63×10-3 

(a) 

    
(b) 

    

(c) 

    
Figure 9. Shapes of rising bubble at different Eotvos and Morton numbers. (a) bubble shape in experiments of Bhaga and Weber [2], (b) final 

bubble shape in present study and (c) time history of bubble shape from stationary state (present study). 

 

As can be seen in Figure 9, there is a good agreement between 

results of two-dimensional simulations with experimental results; 

this, along with the massive amount of researches in literature in 

which bubble dynamics has been investigated using two-

dimensional analyses, show that two-dimensional simulation of 

bubbles can be reliable to some extent. 

3.2. Two Rising Bubbles 

In this section, rising and merging of two bubbles is simulated 

with 2, 10 and 50 Eotvos numbers. Diameter of bubbles is 50 

lattice units in all three simulations, computational domain is 

200×500, and boundary condition in all walls is periodic. 

Density, viscosity and gravity are constant in all three 

simulations and difference in Eotvos numbers is created by 

changing surface tension. Important variables in this problem are 

summarized in Table 1. Specific time in a rising bubble problem 

is defined as �̅� = √𝑑/𝑔 , which in this study is equal to 3162 

time unit (tu). Non-dimensional time is calculated as below. 

(27) 𝑇∗ =
𝑇

�̅�
 

Bubbles are released at the center of domain width, at two 

heights of 40 and 120. Rising movement, deformation, and 

merging of bubbles until the non-dimensional time T*=10 are 

illustrated in Figures 10, 11, and 12, respectively for Eotvos 

numbers of 2, 10, and 50. 

Table 1. Values of main variables in simulation of two bubble dynamics 

value unit symbol variable 

1 mu/lu3 ρl liquid density 

0.1 mu/lu3 ρg bubble density 

0.1 mu/(lu.tu) μl liquid viscosity 

0.01 mu/(lu.tu) μg bubble viscosity 

5×10-6 lu/tu2 g gravity 

0.005625, 0.001125, 

0.000225 

mu/tu2 σ surface tension 

2, 10, 50 - Eo Eotvos number 

0.0025, 0.316, 39.5 - Mo Morton number 

50 lu d bubble diameter 

3162 tu T̅ specific time 

Bubbles are released at the center of domain width, at two 

heights of 40 and 120. Rising movement, deformation, and 

merging of bubbles until the non-dimensional time T*=10 are 

illustrated in Figures 10, 11, and 12, respectively for Eotvos 

numbers of 2, 10, and 50. 
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=10*T =9*T =8*T =7.5*T =6*T =4*T =1*T 

Figure 10. Rising and coalescence of two bubbles with Eotvos number 2 (Eo = 2) 
 

       
=10*T =8*T =7*T =6*T =5*T =4*T =1*T 

Figure 11. Rising and coalescence of two bubbles with Eotvos number 10 (Eo = 10) 
 

       
=10*T =8*T =6*T =5*T =4*T =3*T =1*T 

Figure 12. Rising and coalescence of two bubbles with Eotvos number 50 (Eo = 50) 

 

In all the three conditions, the lower bubble, which is within 

the wake region of the upper one, is absorbed by and merged 

with the upper bubble. At lower Eotvos numbers, tendency to 

deformation is low and bubbles are in oval shapes before and 

after merging. However at larger Eotvos numbers, the effect of 

surface tension force decreases and does not have the required 

capability to preserve the circular shape of the bubble. Therefore, 

the deformation of the bubbles is much greater and the merged 

bubble is in curved shape. 

3.3. Simulation of a Set of Nine Rising Bubbles 

In this section, dynamics of rising motion of a set of nine 

bubbles due to gravity is simulated for two square and lozenge 

configurations and at three Eotvos numbers of 2, 10, and 50. 

Bubbles are released in a circular shape, with a 1.5d center-to-

center distance. Computational domain is 400×1000 and initial 

diameter of bubbles is 50 lattice unit. Rising, deformation and 

merging of bubbles with square and lozenge configurations and 2 

and 10 Eotvos numbers are illustrated in Figures 13, 14, 15 and 

16. 

In square configuration, three columns of bubbles slightly 

push each other away. Then, two upper bubbles of each column 

merge and the lower bubble pursues the upper one. Finally, 

bubbles of the middle column surpass other columns. 

As demonstrated in Figure 15, at Eotvos number of 10, 

bubbles of each column in square configuration merge with each 

other and the resulted three bigger bubbles are observed in the 

domain. As time passes, the square layout collapses and the 

bubbles form a triangle arrangement resembling a tip of an arrow. 

A similar phenomenon can be seen in lozenge configuration. In 

this configuration, a leading bubble is present, which remains at 

the lead all the time. The first combination usually involves the 

two side bubbles, each of which merges with its bottom bubble. 

The leading bubble as well merges with the central one, although 

far from it. 
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=7*T =5*T =3*T 0=*T 

    
=15*T =13*T =11*T =9*T 

Figure 13. Dynamics and deformation of 9 rising bubbles with square configuration and Eotvos number 2 (Eo = 2) 

 

    
=7*T =5*T =3*T =0*T 

    
=15*T =13*T =11*T =9*T 

Figure 14. Dynamics and deformation of 9 rising bubbles with lozenge configuration and Eotvos number 2 (Eo = 2) 
  



M. Ghasemi et al. 

   22 

 

    
=7*T =5*T =3*T =0*T 

    
=16*T =14*T =11*T =9*T 

Figure 15. Dynamics and Deformation of 9 Rising Bubbles with Square Configuration and Eotvos Number 10 (Eo = 10) 
 

    
=7*T =5*T =3*T =0*T 

    
=15*T =13*T =11*T =9*T 

Figure 16. Dynamics and Deformation of 9 Rising Bubbles with Lozenge Configuration and Eotvos Number 10 (Eo = 10) 
 

Velocity field of a set of nine bubbles with lozenge 

configuration, Eotvos number of 10, and non-dimensional times 

of 6, 9, 12 and 15 is depicted in Fig. 17. At the left column of this 

Fig., velocity magnitude is illustrated, where the velocity of the 

bubble set increases with time. As can be seen In the graph for 

non-dimensional time of 9, the two side bubbles combined have a 

higher velocity compared to the other ones. It can be concluded 

that for the bubbles larger in size, the buoyancy force is more 

likely to dominate the drag force, and thus to accelerate the 

upward movement of the bubble. 

In the graphs for non-dimensional times of 12 and 15, as the 

bubble set moves upward, a wake is formed behind the set, which 

moves upwards with an equal velocity to the climbing velocity of 

the bubble set. With a deeper look at the two graphs, it can be 

seen that the velocity of the upstream fluid behind the bubble set 
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is somewhat higher than the velocity of the lower bubbles and the 

flow velocity in the space between the bubbles, which can be 

considered as a responsible factor in pushing the lower bubbles 

towards the leading ones and merging them. 

In graphs on the right side of Fig. 17, the streamlines are 

shown at the corresponding times with the left-hand graphs. The 

most striking feature of these graphs is the vortices formed on 

both sides of the bubble set. The existence of these vortices is 

necessary for the mass conservation in computational domain. In 

other words, the ascension of the fluid in the wake behind the 

bubble set is offset by downward moving of the fluid located far 

away from the bubble set. With this description, it seems that the 

shape of these vortices depends on the width of the domain; in 

other words, it is expected that with an increase in the domain 

width, larger but weaker vortices would form at the bubble set 

sides. 

Finally, the deformation and merging of bubbles in the 

upward movement of the bubble set with square and lozenge 

configurations and Eotvos number of 50 are shown in Figures 18 

and 19. The general pattern of rising and merging is almost 

similar to lower Eotvos numbers; but, as in the case of two 

bubbles, the effect of the surface tension force decreases at higher 

Eotvos numbers; therefore, the deformation of the bubbles is 

more intense and interesting shapes are noticed for the 

combination of bubbles. 

4. Conclusion 

Lee model is one of the most powerful models in simulation 

of two-phase flow with lattice Boltzmann method, which was 

used in this paper to study the dynamics of a rising bubble set for 

the first time. Two initial configurations of square and lozenge 

for a set of nine bubbles were considered and each was studied 

for three Eotvos numbers of 2, 10 and 50. 

According to the Simulations, the overall behavior for the 

square arrangement of bubbles can be summarized as follows. As 

indicated, the three bubble columns take some distance from each 

other initially. Then, the two upper bubbles of each column are 

combined and the lower bubble of each column is pulled by the 

merged bubbles; and the middle column always moves faster 

than the adjacent columns. 

In the lozenge configuration and for low and medium Eotvos 

numbers (Eo = 2 and Eo = 10), the first integration usually 

involves the two lateral bubbles, each of which merges with the 

bottom bubbles. The leading bubble is also combined with the 

central bubble, although far from it. At higher Eotvos numbers 

(Eo = 50), the effect of surface tension force decreases; therefore, 

the deformation of the bubbles is more intense and interesting 

shapes of merging bubbles were observed. 

During the simulations of the rising bubble set, it was also 

noticed that with the upward movement of the bubble set, a wake 

of fluid is formed behind the bubble set. This wake moves 

upward, so that the fluid flow velocity behind the bubble set is 

somewhat higher than the velocity of the lower bubbles and the 

flow velocity in the space between the bubbles. This 

phenomenon can be considered as the responsible factor in 

pushing the lower bubbles towards the leading ones and merging 

them.
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Figure 17. Velocity Distribution of 9 Rising Bubbles with Lozenge 

Configuration and Eotvos Number 10 (Eo = 10) 
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Fig. 18 Dynamics and Deformation of 9 Rising Bubbles with Square Configuration and Eotvos Number 50 (Eo = 50) 
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Fig. 19 Dynamics and Deformation of 9 Rising Bubbles with Lozenge Configuration and Eotvos Number 50 (Eo = 50) 
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