- Akana, J., Fedorov, A. A., Fedorov, E., Novak, W.R., Babbitt, P.C., Almo, S.C. & Gerlt, J.A. (2006). D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha) 8-barrel superfamily. Biochemistry, 45 (8), 2493–503.
- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.
- Barratt, D.P., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J. & Smith, A. M. (2009). Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proceedings of the National Academy of Sciences, 106(31), 13124-13129.
- Beam, C. E., Saveson, C. J. & Lovett, S. T. (2002). Role for radA/sms in recombination intermediate processing in Escherichia coli. Journal of Bacteriology, 184(24), 6836-6844.
- Bertini, I. (2007). Biological inorganic chemistry: structure and reactivity. University Science Books.
- Bonnet, E., Wuyts, J., Rouze, P. & Peer, Y.V. (2004). Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20, 2911–2917.
- Mitcham, J. L., Parnet, P., Bonnert, T. P., Garka, K. E., Gerhart, M. J., Slack, J. L. & Sims, J. E. (1996). T1/ST2 signaling establishes it as a member of an expanding interleukin-1 receptor family. Journal of Biological Chemistry, 271(10), 5777-5783.
- Dai, X., Zhao, P.X. (2011). PsRNATarget: a plant small RNA target analysis s erver. Nucleic Acids Res. 39, W155–W159.
- DiDonato, R. J., Arbuckle, E., Buker, S., Sheets, J., Tobar, J., Totong, R. & Celenza, J. L. (2004). Arabidopsis ALF4 encodes a nuclear‐localized protein required for lateral root formation. The Plant Journal, 37(3), 340-353.
- Hagel, J. M. & Facchini, P. J. (2013). Benzylisoquinoline alkaloid metabolism–a century of discovery and a brave new world. Plant and Cell Physiology, pct020.
- Hagen, G. & Guilfoyle, T. (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology, 49(3-4), 373-385.
- He, G. H., Helbing, C. C., Wagner, M. J., Sensen, C. W. & Riabowol, K. (2005). Phylogenetic analysis of the ING family of PHD finger proteins. Molecular biology and evolution, 22(1), 104-116.
- Jin, J. B., Kim, Y. A., Kim, S. J., Lee, S. H., Kim, D. H., Cheong, G. W. & Hwang, I. (2001). A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. The Plant Cell, 13(7), 1511-1526.
- Lamb, D. C., Lei, L., Warrilow, A. G., Lepesheva, G. I., Mullins, J. G., Waterman, M. R. & Kelly, S. L. (2009). The first virally encoded cytochrome p450. Journal of virology, 83(16), 8266-8269.
- Li, C. & Zhang, B. (2016). MicroRNAs in control of plant development. Journal of cellular physiology, 231(2), 303-313.
- Lin, S. L., Chang, D. & Ying, S. Y. (2005). Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene, 356, 32-38.
- Manna, S. (2015). An overview of pentatricopeptide repeat proteins and their applications. Biochimie, 113, 93-99.
- Müntz, K. (1998). Globulins from legume seeds: Structure and function during storage and reactivation. In Plant Proteins from European Crops (pp. 3-12). Springer Berlin Heidelberg.
- Park, W., Li, J., Song, R., Messing, J. & Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 12(17), 1484-1495.
- Qiu, X. B., Shao, Y. M., Miao, S. & Wang, L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and molecular life sciences, 63(22), 2560-2570.
- Sedlacek, Z., Munstermann, E., Mincheva, A., Lichter, P. & Poustka, A. (1998). The human rab GDI β gene with long retroposon-rich introns maps to 10p15 and its pseudogene to 7p11-p13. Mammalian genome, 9(1), 78-80.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.
- Unver, T., Budak, H. (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230:659–669.
- Vincent, S. & Settleman, J. (1997). The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Molecular and Cellular Biology, 17(4), 2247-2256.
- Wiemer, E. A. (2007). The role of microRNAs in cancer: no small matter. European journal of cancer, 43(10), 1529-1544.
- Yin, Z., Li, C., Han, X. & Shen, F. (2008). Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene, 414(1), 60-66.
- Wera, S. & Hemmings, B. A. (1995). Serine/threonine protein phosphatases. Biochemical Journal, 311(Pt 1), 17.
- Zhang, Y. (2005). miRU: an automated plant miRNA target prediction server. Nucleic Acids Res. 33(Web Server issue):W701–4.
- Zhang, B., Pan, X., Cobb, G. P. & Anderson, T. A. (2006a). Plant microRNA: a small regulatory molecule with big impact. Developmental Biology, 289(1), 3-16.
- Zhang, B., Pan, X., Wang, Q., Cobb, G. P. & Anderson, T. A. (2006b). Computational identification of microRNAs and their targets. Computational Biology and Chemistry, 30(6), 395-407.
- Zhang, B.H., Pan, X.P., Cox, S.B., Cobb, G.P., Anderson, T.A. (2006c). Evidence that miRNAs are different from other RNAs. Cell. Mol. Life Sci. 63, 246.
- Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P. & Anderson, T. A. (2006d). Conservation and divergence of plant microRNA genes. The Plant Journal, 46(2), 243-259.
- Zhang, B., Wang, Q., Wang, K., Pan, X., Liu, F., Guo, T., Anderson, T. A. (2007). Identification of cotton microRNAs and their targets. Gene, 397(1), 26-37.
- Zhang, B., Pan, X. & Stellwag, E. J. (2008). Identification of soybean microRNAs and their targets. Planta, 229(1), 161-182.
- Zhang, W., Luo, Y., Gong, X., Zeng, W., Li, S. (2009). Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 33:84–93.
- Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31:3406–3415.
|