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In this study, thermal performance across straight convective-radiative 

fin with temperature dependent thermal conductivity is considered. 

The variation of parameters method (VPM) is adopted to analyze the 

nonlinear higher order differential equations arising due to thermal 

conductivity and heat transfer coefficient on temperature distribution. 

Where pertinent parameters such as thermo geometric and radiation 

parameters effect on temperature profile are investigated. Result 

obtained depicts quantitative increase of thermo geometric parameter 

causes significant increase in temperature distribution due to 

increasing ratio of convective/conduction heat transfer which 

influence is significant toward fin base. While increasing radiation 

parameter leads to decrease in temperature distribution due to 

increasing heat transfer from fins surface to ambient environment. 

Comparative analysis of result obtained in study against literature 

proves to be in satisfactory agreement. Therefore study provides 

useful insight to fins operational performance in devices such as 

radiators, boilers, refrigerator, oil pipelines amongst other heat 

transfer applications.  
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1. Introduction  

Thermal performance analysis of fins as been a motivating 

subject of interest amongst reseachers  overtime [1-16]. Owing to 

its vast range of applications not limited to refrigeration and 

airconditioning, heat exchangers, steam and power plant amongst 

others.In the bid to determine the performance of fins Aziz and 

Enamul-Huq[1] used perturbation method to analyse convecting 

fins. Shortly after Aziz [2] extended his research on convecting 

fins but considered internal heat generation. Mosayebidorcheh et 

al.[3] provided approximate analytical solutions to temperature 

dependent thermal conductivity with power law while Ganji and 

Dogonchi [4] investigated convective heat transfer in 

longitudinal fins utilizing approximate analytical methods. Least 

square method of solution was adapted by Aziz and Bouaziz [5] 

for longitudinal fins with temperature dependent internal heat 

generation. Hosseini et al. [6] analysed fins with temperature 

dependent thermal conductivity and heat generation.Analysis for 

thermal performance on convective fins was investigated by 

Ghasemi et al. [7] considering thermal conductivity and heat 

generation. Hatami et al. [8-12] studied fins for practical 

applications such as refrigeration, internal combustion engines 

and exhaust waste recovery system. In the bid to improve 

operational performance.Atay and Coskun [13] compared finite 

element method of solution against variational iteration method 

for power law fin type problems. Homotopy perturbation method 

was applied by Chowdhury et al. [14] to heat transfer 

equations.Moitheki et al. [15] provided exact solution of fin 
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problems with power law temperature dependent thermal 

conductivity.As khan et al. [16] analyzed nonlinear fin problems 

with temperature dependent thermal conductivity and heat 

transfer coefficient. 

Therefore the use of numerical and analytical approximate 

solutions was applied by researchers [17-26]. Methods of 

solutions utilised include the pertubation method (PM),homotopy 

analysis method (HAM), homotopy pertubation method (HPM), 

differential transform method (DTM),variational iteration 

method (VIM) , garlerkin method of weighted residuals and 

adomian decomposition method (ADM). Methods such as PM 

are limited owing to the problems of linear restrictive 

assumptions. The need to find initial condition or auxilliary 

parameter to satisfy the boundary condition makes methods such 

as HPM,VIM,DTM,HAM  require computational tools in 

handling  solution of large parameters resulting to large 

computational cost and time .  The  garlerkin method of weighted 

residual scheme, no doubt a powerful approximate analytical 

method requires the weighted residuals to satisfy weighting 

functions which may be arbitrary . The  method of solution by 

decomposing nonlinear coupled equations into linear and 

nonlinear terms as the case of ADM makes it necessary to 

determine lagragian polynomial which makes this method 

cumbersome and labourious for yet simple problems. In the 

search for convenient and relatively simple method of solution, 

the variation of parameters method (VPM) is considered. Since it 

has the capacity to solve weakly and strongly dependent 

nonlinear equations. It as a rapid convergent rate without taking 

the highest order term into consideration as compared with VIM.  

Solid structured systems made of nanometer sized molecular 

components plays crucial role in determining fin type material. 

This requires the manipulation of various material matter and 

modelling to satisfy performance . Therefore the 

nanotechnology, a field relevant for engineering advancement in 

the nanorealm applies nanometer control for material fabrication 

integrated into functional working device. The application of this 

science as provided materials functionally efficient for various 

heat and mass transfer applications . Significant progress as been 

made in the application of nanoelectromechanical systems to 

determine and analyze mechanical properties and behaviour of 

solid structures. As controlled experiments are highly expensive. 

Thus, the renaissance amongst researchers to develop continuum 

models to study static and dynamic behaviour of nanosized solid 

structured systems [27-40]. 

Therefore VPM  been free from discretization ,linearization or 

determination of lagragian polymian is the favoured scheme 

adopted to study thermal performance in the nanostructured 

material. Hence thermal analysis of convective radiative fins 

with themperature dependent thermal conductivity is 

investigated. 

 

 

 

2. Model Development and Problem Formulation 

 

A straight fin undergoing convective and radiative heat transfer 

having length L, temperature dependent thermal conductivity 

k(T) and thickness δ , is exposed to the convective environment 

with both faces at a temperature Ta and convective heat transfer 

coefficient h as depicted in the Fig. 1. Heat transfer in the fin is 

assumed constant with time and surrounding medium of the fin 

with fin base temperature are at uniform temperature. Also fin 

base joining prime surface as no contact resistance. Fin thickness 

compared with width and length is small . Therefore heat transfer 

from fin edges and temperature gradient across fin may be 

neglected .The co-ordinate length as its origin from the fin’s tip 

with a positive orientation from the tip to the base of the fin. 

With respect to the above assumptions ,the problem governing 

differential equation is presented as: 

 

                                      

 
Figure 1. Physical model of problem. 
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Here small temperature difference exists during heat flow within 

material. The difference is necessitated using thermal fin 

properties and temperature invariant physical models. However 

in such situation, T4 may be expressed as linear function of 

temperature. This is expressed as: 
4 3 44 3T T T T                              (6) 

Substituting the Eq. (6) into Eq. (2) can be expressed as 
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Where non-dimensional parameters are introduced as: 
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With the aid of the dimensionless parameters introduced in Eq. 

(8), the governing equation can be expressed as: 
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This is further expressed as 
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With appropriate boundary conditions stated as 
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2.1. Principles of Variation of Parameters Method (VPM) 

 

The procedural concept or technique of the variation of 

parameters method (VPM) for analysis of differential equation is 

expressed as follows. Nonlinear form of differential equation is 

in the operator form 

( ) ( ) ( )Lf Rf Nf g    
                                                (13)                      (13)

 

Given  

L is easily convertible and the highest order derivative 

R is the linear operator remainder and is less compared with L 

G is the source term or system input 

u is the system output 

Nu is the nonlinear equation terms 

Decomposing Eq. (13) above into L+R .Therefore the VPM can 

be defined as follows 
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Where  

m is the order of the given differential equation 

ki is an unknown constant which could be obtained using 

initial/boundary conditions 

( , )    is a multiplier which reduces the equation order of 

integration, which is determined adopting the Wronskian 

technique stated as Sobamowo et al. [25] 
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2.2 Application of the Variation of Parameters Method 

Applying the standard procedure of the VPM the Eq. (10) is 

presented as 
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Here k1 and k2 are constant. They are derived by taking the 

highest order in the linear term Eq. (10) which is integrated 

twice, to generate the scheme final form. Applying the boundary 

condition Eq. (12). The above equation can be written as 
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Following the iterative scheme, it can be easily shown that 
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The Newton law of cooling is applied in determining the fins 

heat transfer. Therefore ratio of actual heat transfer from fin 

surface to heat transfer from the surface of the entire fin is at the 

same temperature as the base. This is regarded as efficiency of 

the fin, derived as: 
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Therefore fins efficiency can be obtained upon simplifying the 

Eq. (22) which can be easily shown as 
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3. Results and Discussion 

The validation of result of present study against numerical 

solutions (NM) and the Chebychev spectral collocation method 

(CSCM) is illustrated in Table 1.This proves the accuracy of the 

variation of parameter method (VPM) in providing solutions to 

strongly dependent nonlinear solution through yet a simple and 

convenient method of solution. The effect of thermal 

conductivity or nonlinear parameter (β) on heat transfer is 

illustrated in Figs. 2 and 3. As depicted from the plots increasing 

numerical values of β shows increasing temperature distribution 

across the fin length which is due to heat transfer increase across 

fins surface to ambient environment.  Owing to rapid heat 

conduction from fins prime surface to base of fin.  

 

 

Table 1. Comparison of various values of x for dimensionless 

temperature. 

X NM[26] CSCM[26] VPM(Present 

Study) 

0.0 0.648054 0.648054 0.648054 

0.1 0.651297 0.651297 0.651297 

0.2 0.661059 0.661059 0.661059 

0.3 0.677436 0.677436 0.677436 

0.4 0.700594 0.700594 0.700594 

0.5 0.730763 0.730763 0.730763 

0.6 0.768246 0.768246 0.768246 

0.7 0.813418 0.813418 0.813418 

0.8 0.866731 0.866731 0.866731 

0.9 0.928718 0.928718 0.928718 
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Figure 2. Effect of nonlinear parameter on temperature 

distribution. Where Nr=1.75, M=1. 

                   
Figure 3. Effect of nonlinear parameter on temperature 

distribution. Where Nr=2.0, M=1.75. 

 

                                           

 
Figure 4. Effect of thermo geometric parameter on temperature 

distribution. Where Nr=0.5, β=0.1. 

                                           

 
Figure 5. Effect of thermo geometric parameter on temperature 

distribution. Where Nr,=1.0, β=0.3. 

 

                                          

 
Figure 6. Effect of radiative parameter on temperature 

distribution. Where M=0.5, β=1.25. 

 

As observed in Fig. 4 and 5, effect of thermo-geometric 

parameter (M) influence on convective radiative fin is shown. As 

depicted M as significant influence on heat transfer, as 

quantitative increase in M parameter leads to significant increase 

in temperature distribution. This shows M as high impact on 

temperature distribution and heat transfer. As this phenomenon 

can be physically explained due to increase in ratio of 

convective/conduction heat transfer which influence is 

significant toward fin base. Radiative parameter (Nr) effect on 

temperature distribution is observed in Fig. 6. As depicted 

increasing Nr shows rapid decrease in temperature distribution 

which is due to increasing heat transfer from fins surface to 

ambient environment. 
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Figure 7. Effect of nonlinear parameter on fins efficiency. 

Where M=0.1.                                

 
Figure 8. Effect of thermo geometric parameter on fins 

efficiency. Where β=0.2. 

 

Figure 7 represents the effect of nonlinear parameter (β) on fins 

efficiency. From the plot it is observed that increase in β causes 

increase in fins efficiency while effect of thermo-geometric 

parameter (M) shows increasing M parameter leads to decrease 

in efficiency. Also it worth noting that increasing radiation 

improves efficiency of the fin. 

 

 

4. Conclusion 

This paper studies convection- radiation effect on straight fins 

with temperature dependent thermal conductivity using the 

variation of parameter method (VPM). The VPM is adopted in 

generating approximate analytical solutions to strongly nonlinear 

higher order ordinary equation describing the heat transfer. 

Solutions obtained are used to investigate pertinent heat transfer 

parameter including thermo geometric and radiation parameter 

on heat transfer. Result obtained shows increasing thermo 

geometric parameter leads to increase in temperature distribution 

while increase in radiation parameter causes decrease in 

temperature distribution. Therefore study can be said to provide 

useful insight to the operational and thermal performance of fins 

application in heat exchange media such as radiator, gas and 

steam plants, boiler, refrigeration and air conditioning 

equipment’s and oil pipe lines amongst others. 

 

 

 

Nomenclature 

 

ar Aspect ratio 

b Fins length 

Ac Cross sectional area fo fins 

Ap Profile area of fins 

Bi Biot number 

h Convective heat transfer coefficient 

k  Thermal conductivity of fin material 

ka Thermal conductivity of fin at ambient  

               temperature 

kb Thermal conductivity of fin material 

K Dimensionless thermal conductivity of fin        

               material  

M Dimensionless thermo-geometric fin  

               parameter 

m2 Thermo-geometric fin parameter 

Nr Radiative parameter 

P Perimeter of fin 

T Temperature 

T∞ Ambient temperature 

Tb Temperature at fins base  

X Dimensionless length of fin 

q Rate of heat transfer 

Qr Dimensionless heat transfer 

 

Greek Symbols 

 

β Nonlinear or Thermal conductivity  

               parameter  

δ Thickness of the fin,m 

θ Dimensionless temperature 

θb Dimensionless temperature at base of fin 

η Efficiency of the fin 

  Effectiveness of the fin 
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