تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,504,818 |
تعداد دریافت فایل اصل مقاله | 98,768,908 |
برآورد ضریب کیفیت امواج تراکمی وابسته به فرکانس در ناحیه فاریاب (جنوب شرق زون سنندج-سیرجان) با استفاده از پسلرزههای زلزله 9 اسفند 1384 تیاب | ||
فیزیک زمین و فضا | ||
مقاله 3، دوره 44، شماره 2، تیر 1397، صفحه 297-306 اصل مقاله (1.01 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2018.239278.1006924 | ||
نویسندگان | ||
سارا ریحانی1؛ عباس غلامزاده* 2 | ||
1دانشجوی کارشناسی ارشد، گروه فیزیک، دانشکده علوم، دانشگاه هرمزگان، هرمزگان، ایران | ||
2استادیار، گروه فیزیک، دانشکده علوم، دانشگاه هرمزگان، هرمزگان، ایران | ||
چکیده | ||
گستره مورد مطالعه ناحیه فاریاب، در جنوب شرق زون دگرگونی سنندج- سیرجان و در مجاورت گسل معکوس اصلی زاگرس MZRF قرار دارد. این ناحیه جزو معدود نواحی در گستره سنندج- سیرجان است که فعالیت لرزهای بالایی از خود نشان میدهد. زمینلرزه 9 اسفند 1384 با بزرگای 0/6 Mw= در این ناحیه رخ داده است. بهرغم بزرگی قابلتوجه، آسیب قابلملاحظهای حتی به ساختمانهای ضعیف خشت و گلی روستایی وارد نشد که میتواند نشانگر توان محیط در جذب بالای انرژی امواج باشد. پسلرزههای این رویداد جهت محاسبه کاهندگی امواج تراکمی مورد استفاده قرار گرفته است. جهت برآورد رابطه وابستگی فرکانسی ضریب کیفیت امواج P به روش نرمالسازی کدا، از 431 پسلرزه بهدقت تعیین محل شده، استفاده شده است. در این روش ضریب کیفیت امواج تراکمی در 5 بازه فرکانسی در منطقه فاریاب تعیین شده است. رابطه وابستگی فرکانسی برای امواج طولی در منطقه مورد مطالعه بهصورت Qp=23 f 0.78 به دست آمده است. رابطه وابستگی فرکانس برای پرتوهای منتشر شده در دو امتداد شمال غرب- جنوب شرق و شمال شرق- جنوب غرب بهترتیب بهصورت Qp=10 f 0.94 و Qp=25 f 0.75است که مقدار ضریب کیفیت در بسامد مرجع 0/1 هرتز کمتر از 200 میباشد. بنابراین میتوان نتیجه گرفت که این منطقه از لحاظ لرزهخیزی و زمینساختی فعال میباشد. کم بودن فاکتور کیفیت که دلالت بر کاهندگی نسبتاً زیاد دارد نشانگر فعالیت لرزهای زیاد این ناحیه است و با انتظار ما از ساختار پوسته این ناحیه که زون دگرگونی است چندان انطباق ندارد. این کاهندگی زیاد احتمالاً ناشی از زون خورد شده در اثر زلزلههای متعدد این ناحیه است. | ||
کلیدواژهها | ||
کاهندگی؛ امواج تراکمی؛ روش نرمالسازی کدا؛ سنندج- سیرجان؛ فاریاب | ||
مراجع | ||
Alavi, M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229, 211-238. Alavi, M., 1996, Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics, 21(1), 1-33. Alavi, M. and Mahdavi, M. A., 1994, Stratigraphy and structures of the Nahavand region in western Iran, and their implications for the Zagros tectonics. GEOLOGICAL MAGAZINE- LONDON-, 131(1), 43-43. Berberian, M., 1995, Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics, 241(3), 193-224. Berberian, M. and King, G. C. P., 1981, Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265. Chung, T. W. and Sato, H., 2001, Attenuation of high-frequency P and S waves in the crust of Southeastern South Korea. Bulletin of the Seismological Society of America, 91(6), 1867-1874. Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A. and Priestley, K., 2006, Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167, 761–778. Gholamzadeh, A., Yamini-Fard, F., Hessami, K. and Tatar, M., 2009, The February 28, 2006 Tiab earthquake, Mw 6.0: Implications for tectonics of the transition between the Zagros continental collision and the Makran subduction zone. Journal of Geodynamics, 47(5), 280-287. Ma’hood, M., Hamzehloo, H. and Doloei, G. J., 2009, Attenuation of high frequency P and S waves in the crust of the east-central Iran. Geophysical Journal International, 179, 1669–78. Mohajjel, M. and Fergusson, C. L., 2000, Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Structural geology, 22(8), 1125-1139. Nowroozi, G., 2006, Seismological constraints on the crustal structure of NE Iran. Ph.D. thesis. International Institute of Earthquake Engineering and Seismology, Tehran. Sato, H. and Fehler, M. C., 1998, Seismic Wave Propagation and Scattering in the Heterogeneous Earth. Springer Verlag, New York. Şengör, A. M. C., 1990, A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman. Geological Society, London, Special Publications, 49(1), 797-831. Sharma, B., Gupta, A. K., Devi, D. K, Kumar, D., Teotia, S. S. and Rastogi, B. K., 2008, Attenuation of high-frequency seismic waves in Kachchh region, Gujarat, India. Bulletin of the Seismological Society of America, 98, 2325–40. Vasheghani Farahani, J., Zare, M. and Cichowicz, A., 2012, Attenuation of high-frequency P and S waves in south and southeast Tehran using blast data. Soil Dynamics and Earthquake Engineering, 40, 99-108. Vernant, P., Nilforoushan, F., Chery, J., Bayer, R., Djamour, Y., Masson, F., Nankali, H., Ritz, J. F., Sedighi, M. and Tavakoli, F., 2004, deciphering oblique shortening of central Alborz in Iran using geodetic data. Earth and Planetary Science Letters, 223, 177-185. Yaminifard, F., Tatar, M., Hessami, K., Gholamzadeh, A. and Bergman, E. A., 2012, Aftershock analysis of the 2005 November 27 (Mw 5.8) Qeshm Island earthquake (Zagros-Iran): Triggering of strike-slip faults at the basement. Journal of Geodynamics, 61, 138-147. Yoshimoto, K., Sato, H. and Ohtake, M., 1993, Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geophys. J. Int., 114, 165-174. | ||
آمار تعداد مشاهده مقاله: 1,171 تعداد دریافت فایل اصل مقاله: 861 |