تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,508 |
تعداد مشاهده مقاله | 124,128,452 |
تعداد دریافت فایل اصل مقاله | 97,235,918 |
ارزیابی فرسایش قابلتحمل خاک در مقیاس حوضه آبخیز بر اساس باروری و کیفیت خاک (حوضه حاجی قوشان استان گلستان) | ||
تحقیقات آب و خاک ایران | ||
مقاله 6، دوره 48، شماره 5، بهمن 1396، صفحه 985-994 اصل مقاله (929.35 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2017.218799.667558 | ||
نویسندگان | ||
حیدر غفاری* 1؛ منوچهر گرجی2؛ محمود عرب خدری3؛ قربانعلی روشنی4؛ احمد حیدری2 | ||
1دانشگاه تهران | ||
2استاد گروه مهندسی علوم خاک دانشگاه تهران | ||
3دانشیار پژوهشکده حفاظت خاک و آبخیزداری | ||
4استادیار مرکز تحقیقات کشاورزی استان گلستان | ||
چکیده | ||
فرسایش خاک مهمترین شکل تخریب منابع خاک و منبع آلودگیهای غیرنقطهای بهشمار میرود. هنگامیکه مقدار فرسایش خاک از آستانه قابلتحمل تجاوز کند طیف وسیعی از مشکلات اقتصادی-اجتماعی- محیطزیستی رخ میدهند. روشهای مختلفی برای تعیین فرسایش قابلتحمل ارائه شده است که هرکدام دارای مزیت و محدودیتهای خاص خود هستند. در این پژوهش، روش مبتنی بر شاخص باروری و روش مبتنی بر عمق و کیفیت خاک بهعنوان رایجترین روشها برای تعیین فرسایش قابلتحمل مورد استفاده قرار گرفتند. هر دو روش مجموعهای از ویژگیهای اساسی خاک شامل نفوذپذیری، ظرفیت نگهداری آب، کربن آلی خاک، پایداری خاکدانهها، جرم مخصوص ظاهری و وضعیت حاصلخیزی خاک شامل عناصر غذایی نیتروژن، فسفر و پتاسیم را دربر دارند. نتایج نشان داد بین مقدار فرسایش قابلتحمل محاسبهشده با هر دو روش ارتباط نزدیکی وجود دارد. میانگین وزنی مقدار فرسایش قابلتحمل محاسبهشده برای منطقه موردمطالعه با استفاده از مدل شاخص باروری حدود 2/9 و بر اساس عمق و کیفیت خاک حدود 2/10 تن بر هکتار در سال برآورد شد. هرچند روش مبتنی بر عمق و کیفیت خاک بهعنوان یک روش استاندارد مطرح است اما نتایج نشان داد که روش باروری خاک نیز کارایی قابلقبولی داشته و حتی به لحاظ مفهومی قویتر به نظر میرسد؛ زیرا در این روش، وضعیت باروری خاک سطحی با خاک زیرسطحی مقایسه میشود اما در روش کیفیت خاک فقط به وضعیت فیزیکی و شیمیایی خاک سطحی توجه میشود. از طرف دیگر، روش مبتنی بر عمق و کیفیت خاک، دامنه خاکهای متعلق به یک گروه بسیار زیاد بوده و بنابراین دقت تخمین فرسایش قابلتحمل پایین است. ازآنجاییکه هر دو مدل تنها اثرات درونمزرعهای فرسایش را حساب میکنند، بنابراین مقادیر بهدستآمده بدون درنظر گرفتن اثرات برون مزرعهای فرسایش، برای برنامههای حفاظت خاک منطقه قابل توصیه هستند. | ||
کلیدواژهها | ||
تخریب خاک؛ آلودگی غیرنقطهای؛ حفاظت خاک | ||
مراجع | ||
Bazzoffi, B. (2009). Soil erosion tolerance and water runoff control: minimum environmental standards. Reg Environ Change 9:169–179. Bhattacharyya, P., Mandal, D., Bhatt, V. K., Yadav, R. P. (2011). A Quantitative Methodology for Estimating Soil Loss Tolerance Limits for Three States of Northern India. Journal of Sustainable Agriculture, 35:3, 276-292. Bui, E. N., Hancock, G. J. &Wilkinson, S. N. (2011). ‘Tolerable’ hillslope soil erosion rates in Australia: Linking science and policy. Agriculture, Ecosystems and Environment, 144, 136-149. Burrough, P.A., MacMillan, R.A., Deursen van, W. (1992). Fuzzy classification methods for determining land suitability from soil profile observations and topography. Journal of Soil Science 43 (2), 193–210. Delgado, F. (2003). Soil physical properties on Venezuelan steeplands: Applications to conservation planning. The Abdus Salam International Centre for Theoretical Physics. College on Soil Physics. Doran, J.W., Parkin, T.B. (1994). Defining and assessing soil quality. In: Doran, J.W., et al. (Ed.), Defining soil quality for a sustainable environment. Soil Science Society of America Special Publication, vol. 35. Soil Science Society of America, Madison, Wisconsin, 3–21. Duan, X., Xie, Y., Liu, B., Liu, G., Feng, Y. and GAO, X. (2012). Soil loss tolerance in the black soil region of Northeast China. J. Geogr. Sci 22(4): 737-751. Duan, X., Xie, Y., Ou, T., Lu, H. (2011). Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. Catena 87: 268–275. Duan, X.W., Xie, Y., Feng, Y.J., Yin, S.Q. (2009). Study on the method of soil productivity assessment in black soil region of Northeast China. Agric. Sci. China 8 (4), 472–481. Eswaran, H.; Lal, R.; Reich, P.F. (1999) Land Degradation: An overview. In Response to Land Degradation, Proceedings of the 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand, 25–29 January; Bridges, E.M., Hannam, I.D., Oldeman, L.R., Pening de Vries, F.W.T., Scherr, S.J., Sompatpanit, S., Eds.; Oxford University Press: New Delhi, India, 2002. John, R. N. and Kim, S. P. (2002). Aggregate stability and size distribution. In: H.D. Jacob and G. Clarke Topp, Co-editor (Ed.). pp. 201-414. Methods of Soil Analysis. Part 4. Physical Methods. Soil Sci. Soc. A., Madison, WI. , USA. Johnson, L.C. (2005). Soil loss tolerance: fact or myth. Journal of Soil and Water Conservation 60 (3), 52-60. Karlen, D.L., Parkin, T.B., Eash, N.S. (1996). Use of soil quality indicators to evaluate conservation reserve program sites in Iowa. In: Doran, J.W., Jones, A.J. (Eds.), Methods for assessing soil quality. Soil Science Society of America Special Publication, vol. 49. Soil Science Society of America, Madison, Wisconsin, pp. 345–356. Karlen, D.L., Stott, D.E. (1994) A frame work for evaluating physical and chemical indicators of soil quality. In: Doran, J.W., et al. (Ed.), Defining soil quality for a sustainable environment. Soil Science Society of America Special Publication, vol. 35. Soil Science Society of America, Madison, Wisconsin, pp. 53–72. Lakaria, B.L., Mandal, D., and Biswas, H. (2010). Permissible soil erosion limits under different landscapes of Chhattisgarh, Indian J. Soil Cons., 38, 148–154. Lal, R. (1998). Soil erosion impact on agronomic productivity and environment quality. Critical Review Plant Sci., 4, 319-464. Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development. 12: 519-539. Li, L., Du, S., Wu, L., and Liu, G. (2009). An overview of soil loss tolerance. Catena 78 (2009) 93–99. Lobo, D., Lozano, Z., and Delgado, F., (2005). Water erosion risk assessment and impact on productivity of a Venezuela soil. Catena 64 (2–3), 297–306. Mandal, D., and Sharda, V. N., and Tripathi K. P. (2011). Assessment of permissible soil loss in India employing a quantitative bio-physical model. Current Science. 100 (3): 383-390. Mandal, D., Sharda, V. N., and Tripathi K. P. (2010). Relative efficacy of two biophysical approaches to assess soil loss tolerance for doon valley soils of india. Journal of soil and water conservation. 65 (1): 42-49. McBratney, D.E., Odeh, I.O.A. (1997). Application of fuzzy sets in soil science; Fuzzy logic, fuzzy measurements and fuzzy decision. Geoderma 11, 85–113. Nearing, M.A., Deer-Ascough, L., Laflen, J.M. (1990). Sensitivity analysis of the WEPP hillslope profile erosion model. Transaction of ASAE 33, 839–849. Pimentel, D., Burgess, M. (2013). Soil Erosion Threatens Food Production. Agriculture, 3, 443-463. Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J. (2009). Tolerable versus actual soil erosion rates in Europe. Earth Science Reviews 94, 23–38. Wischmeier, W. H., Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. USA: United States Department of Agriculture, Agriculture Handbook. No.537, Washington, D.C. Zhang, K., Li, S., Peng, W., Yu, B. (2004). Erodibility of Agricultural soils on the Loess Plateau of China. Soil Till. Res. 76, 157–165. Duan, X., Shi, X., Li, Y., Rong, L., and Fen, D. (2017). A new method to calculate soil loss tolerance for sustainable soil productivity in farmland. Agron. Sustain. Dev. 37 (2). Alexander, E.B., 1988. Rates of soil formation implications for soil loss tolerance. Soil Sci. 145 (1), 37–45. Renschler, C.S., Harbor, J. (2002). Soil erosion assessment tools from point to regional scale: The role of geomorphologists in land management research and implementation. Geomorphology 47, 189–209. Paschall, A. H., Klingebiel, A. A, Allaway, W. H. (1956). Committee report: permissible soil loss and relative erodibility of different soils. Agr. Res. Serv. and Soil Cons. Serv., Washington DC. Sparovek, G., Schnug, E. (2001). Temporal erosion-induced soil degradation and yield loss. Soil Sci Soc Am J 65(5):1479–1486. Benson, V.W., Rice, O.W., Dyke, P.T., Williams, JR, Jones, C.A. (1989) Conservation impacts on crop productivity for the life of a soil. J Soil Water Conserv 44(6):600–604. Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C., Wani, S.P., (2009). Role of defor- estation and hillslope position on soil quality attributes of loess-derived soils in Golestan province. Iran. Agric. Ecosyst. Environ. 134, 178–189. Page, A.L., Miller, R.H., Jeeney, D.R., (1992). Methods of Soil Analysis, Part 2. Chemical and Mineralogical Properties. SSSA Pub, Madison, 1159 p. Romano, N., and Santini, A. (2002). Water retention and storage: Field. In: J.H. Dane and G.C. Topp, editors, Methods of soil analysis: Part 4. Physical methods. SSSA Book Ser. 5. SSSA, Madison, WI. p. 721–738. Bouwer, H. (1986) Intake rate: cylinder infiltrometer. In: Klute, A. (Ed.), Methods of Soil Analysis. Part I: Physical Analysis. SSSA, Madison, WI, pp. 825–844.
| ||
آمار تعداد مشاهده مقاله: 715 تعداد دریافت فایل اصل مقاله: 651 |