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A B S T R A C T 

 

Fracture orientation is an important factor in determining the reservoir fluid flow direction in a formation because fractures are the major 
paths through which fluid flow occurs. Hence, a true modeling of orientation leads to a reliable prediction of fluid flow. Traditionally various 
distributions are used for orientation modeling in fracture networks. Although they offer a fairly suitable estimation of fracture orientation, 
they would not consider any spatial structure for simulated fracture orientations, and would not be able to properly reproduce the histograms 
and the stereogram of dip and azimuth. Respect to this geostatistical and statistical parameters, a new approach has been presented in this 
paper in which the observed fractures on the image log are firstly clustered, and the major fracture groups are categorically simulated over 
the study area. Afterwards, azimuths are simulated using the probability field obtained from categorical simulation and dips are conditionally 
simulated to azimuths. The method is illustrated through a case study. The results show that the histograms and stereograms are completely 
reproduced. In addition, the connectivity of modeled fracture network using the presented method is surveyed in comparison with modeled 
fracture network using Kent distribution. 
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1. Introduction 

Although in most cases fractures contain low capacity for fluid 
storage, they control the main fluid stream process in a fractured 
reservoir [1]. Thus, detailed knowledge and prediction of fractured 
media are main priorities to modelers, therefore numerous methods 
have been developed to model fracture network in a medium accurately. 
In order to achieve this purpose, models need to be able to give a suitable 
prediction of fractures different attributes such as aperture, length, 
density and orientation (among which modeling would be conducted). 
As the degree of percolation [2] in different layers highly depends on 
the orientation of fractures in porous media the Orientation is 
important to be modeled precisely. 

From a geostatistical point of view, fracture parameters as well as 
most of variables in geology such as porosity and permeability tend to 
demonstrate reservoir’s spatial structure [3, 4]. Olarewaju et al. (1997) 
have generated a 3D density field using variograms, and developed 
fracture permeability description conditioned to density field [3]. Rafiee 
and Vinches (2008) have analyzed variograms in a 2D fracture network, 
and use it for 3D fracture network modelling [4]. Liu et al. (2009) have 
suggested a multiple-point statistics based method to simulate fracture 
network [5]. Fadlelmula et al. (2015) have employed multiple-point 
geostatistics to model a discrete fractured-vuggy network of a core 
sample using a micro-CT scan image of the core. Their results have 
preserved continuity and structure of the reference model [6]. In 
addition, some authors have tried to model fracture network 
conditioned to other either dynamic or static data [7, 8]. Stochastic 

object-based modeling is another way implemented by Haddad et al 
(2015) to generate natural fracture network [9].  

The approach traditionally used for fracture orientation modeling is 
sampling from distributions. The major distributions employed by 
geomodelers are Fisher von Mises, and Bingham and Kent models, 
which are probability distributions in two-dimensional unit sphere (S2) 
[10-14]. In Fisher von Mises distribution two major parameters are μ and 
κ which are known as mean direction and concentration, respectively. 
The higher the value of κ, the more the concentration of data around μ. 
Bingham model, on the other hand, describes an orientation distribution 
which is annular axisymmetric. Kent model also describes an anisotropic 
distribution around an interested orientation [15]. Using these 
distributions, geomodelers aim to reproduce the statistical parameters 
of each fracture set extracted from borehole image log data. 
Furthermore, Michelena et al. (2013) have extracted dispersion in 
orientation of natural fractures from seismic data [16]. Mahmoudian et 
al. (2013) have determined fracture orientation and intensity from P-
wave data [17]. The effect of fracture orientation on induction logs also 
is studied by Hu et al (2010) [18]. 

In this paper a combination of geostatistical and statistical   
techniques is used to model fracture orientation in a specific area of a 
reservoir, based on the data taken from Formation Microimager (FMI). 
This is assumed that fracture intensity, aperture and length are 
previously modeled throughout the region. Therefore, this study is 
constructed on an area previously studied by Nazari Ostad et al. (2016) 
[19]. For this purpose, the fracture data of a single well are classified to 
different fracture sets, employing spectral clustering technique. Then 
indicator variogram calculated and modeled for two major fracture sets, 
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by which a fracture orientation field is modeled. The results used for 
conditional dip and azimuth modeling. 

2. Case Presentation  

The study is performed on a fractured field located in south of Iran 
(Fig. 1) in which the major part of oil production relates from the existed 
fractures. An area of 360 meters between two wells considered to 
demonstrate the method this paper aimed to model, as shown in Fig. 2. 
Fig. 2 Well logs are taken from the Pabdeh formation which dominantly 
is formed by silicate-carbonate deposits and enrolls in oil production. 

Besides, the thickness of simulated area is about 230 meters. The two 
wells are positioned in southern ridge of the structure on   an identical 
depth contour line. The number of grid cells is 73×1×47, and the cell grid 
size is 5×10×5m^3. The characteristics of fracture network, except 
orientation, such as fracture aperture, length and density are formerly 
modeled using the FMI data from well No.1 and the conventional well 
logs from well No.1 and well No.2. T The method is completely 
explained by Nazari et al. (2016). Using a more systematic method, 
fracture orientations are modeled in this section. The orientations are 
measured by FMI taken from well No.1 as illustrated in Fig. 3, 
orientations are projected in lower hemisphere system. 

 
Fig. 1. Map of the field and position of wells.

Fig. 2 Schematic of study area. 

3. Data processing method 

The suggested method in this paper lies on the following structure: 
1. Identification of fracture sets based on the concentration of 

fracture poles on stereonet. To do this, the stereonet should 
be first contoured using conventional software, through 
which the number of fracture concentration centers are 
supposed to be distinguished. Secondly, the observed 
fractures are divided to different fracture sets using 
clustering algorithms. 

2. Distinct fracture sets take specific Identity Numbers (ID). 
Therefore, if the fracture belongs to set number 1 the fracture 
ID would be 1 and if belongs to set number 2 the fracture ID 
would be 2, and so on.  

3. Categorically simulation of fracture sets, which result a 
probability field for each fracture set. 

4. Azimuth modeling using the estimated probability fields.  
5. Dip, at the end, is modeled conditioned to the azimuth value 

for each fracture. 

 
Fig. 3. The stereogram of orientation data, projected on lower hemisphere 

system. 

3.1. Fracture clustering 

Characterization of fracture networks is a difficult process. To reduce 
the difficulties, geologists and geomodelers cluster them into fracture 
sets, each of which is considered to be formed in a distinct tectonic 
process such as faulting and folding [20]. Among different algorithms 
presented for clustering [21-24], in this research the spectral method 
suggested by Jimenez-Rodrigueza and Sitar (2006) is implemented for 
this purpose, based on the fracture orientations. For clustering, firstly, 
the orientation data are transformed to a three dimensional Cartesian 
coordinate system. Secondly, a similarity matrix is defined using the 
transformed data which their spectrum is employed for dimension 
reduction and a better clustering. K-means clustering, thirdly, ascribe 
the fractures to different sets. More detailed explanation could be found 
in Jimenez-Rodriguez and Sitar paper (2006). 

One problem associated with this method is that all fractures are 
allocated to the fracture sets, while in each set some of fractures   do not 
seem to belong to that set. Therefore, the method should be modified 
to ignore outlier fractures. In the presented case, although according to 
the contour diagram (Fig. 4) two distinct fracture concentration centers 
exist, using spectral method fractures are clustered in 3 categories (Fig. 



 M. Nazari Ostad et al. / Int. J. Min. & Geo-Eng. (IJMGE), 51-2 (2017) 139-146 141 

 

5). Cumulative density function (Fig. 6) indicates first, second and third 
sets contain 0.3, 0.64 and 0.06 of all fractures, respectively. The third 
category identified by clustering method contains a few dispersed 
fractures that show no concentration center, therefore these fractures 
do not seem to form any fracture set. Consequently, two major fracture 
sets have been considering for modeling. 

Fig. 4. The contouring stereonet of initial fracture orientations. 

 

Fig. 5. Clustered fractures into different sets using spectral clustering method. 

3.2. Categorical simulation 

Categorical simulation approaches have been developed for 
modeling of categorical variables such as lithology. These methods 
provide simulators with tools for inter-dependent structural simulation 
of variables, which the structures are basically imposed by variograms 
in major directions. It should be mentioned, variograms are the 
reflections of geological variations [25]. These variations are specifically 
mirrored in individual or a combination of variogram models such as 
spherical, exponential, Gaussian and hole effect [26]. While the first 
three models show a monotonic increase in experimental variogram 
values, hole effect indicate a repetitive geology structure in a certain 
period. 

In the former section fractures have been divided to different fracture 
sets using spectral clustering method. Depend on the data, the number 
of categories differs - two in the present case. Considering fracture sets, 
k, indicator function, i, for the observed fracture, f(j), is defined as 
follows: 

𝑖𝑘(𝑓(𝑗),k)= {
0         𝑖𝑓 𝑓(𝑗) ∉ 𝑠𝑒𝑡(𝑘)

1         𝑖𝑓 𝑓(𝑗) ∈ 𝑠𝑒𝑡(𝑘)
 (1) 

The function take value 1 if one fracture set exists; that is 

∑ i(f(j). k) = 1K
k  when K fracture sets exist. Indicator kriging was 

proposed [27] to estimate the probability of 𝑘variable at an unknown 
location, 𝑥(𝑢). In this case, using the fractures in neighborhood the 
estimated value is as follows: 

𝑖𝑘
∗(𝑥(𝑢). 𝑘) = ∑ 𝜆𝛼𝑖(𝑓(𝑗). 𝑘)

𝑙
𝛼=1 + [1 − ∑ 𝜆𝛼

𝑙
𝛼=1

]𝑝
𝑘
  (2) 

Which the weights 𝜆𝛼 should be calculated for the fractures of set 𝑘 
based on the modeled indicator variograms of the observed fractures 
[28], and 𝑝𝑘 is the prior probability of event occurrence. A cumulative 

probability function (CDF) is built using all 𝐾 estimates  𝑖𝑘
∗(𝑥(𝑢). 𝑘). 

Then, a random value between 0 and 1 determines the fracture set of 
location 𝑥(𝑢) by sampling from the built CDF. The sampled value is 
considered as a hard data, and the process is repeated for all grid cells, 
known as indicator simulation. Choosing different paths for simulation, 
result in different simulated realizations. Averaging over the different 
simulated realizations results a probability field for each fracture set. 

 
Fig. 6. The proportion of fracture sets of initial data. 

3.2.1. Variography 

As mentioned above, simulation of fracture in the area of interest 
calls for variography along different directions. Variogram intend to 
show variation of a variable along a specific direction and is dominantly 
influenced by geological phenomena such as faults and folds. In present 
case study, as the fracture data extracted from only one well in the area, 
experimental variograms can only be estimated in vertical direction, and 
along the horizontal directions, no variogram can be directly computed. 
Seismic data are useful  to overcome the difficulty of lack of enough well 
data when modeling horizontal variograms [26].  If seismic data are not 
available, alternatively, the only available option would be using the 
trend estimated from vertical direction and generalizing that to 
horizontal ones. According to other available parameters around the 
reservoir a horizontal range of 6 fold in relation to the vertical one is 
suitable. The variograms of two sets along the vertical direction are 
shown in Fig. 7. A hole-effect model is fitted, demonstrating a 30m 
periodic structure range with 0.1 contribution, associated with 0.17 
nugget effect for the first set and 0.16 for the second one. For the 
horizontal variography we have generalized the vertical trends based on 
the variography of other variables such as the porosity, which the 
method is completely explained in the same case study of another 
publication by Nazari Ostad et al. (2016). Consequently, the same 
structure with a 180m range is considered for the horizontal direction.  
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Fig. 7. The variogram plots of 1st and 2nd fracture sets. 

3.2.2. Sequential Indicator Simulation 

The employed simulation process is Sequential Indicator Simulation 
(SIS). In this method each cell of gridded area take a value 
corresponding to the fracture set. Usually, numerous simulations are 
run (50 in this case), which their average over the individual cells results 
in a probability map of the study area. Note that each cell take a value 
between 0 and 1 representing the probability of the cell attachment to 
the simulated fracture set 𝑘. The same probability map could be gained 
for all sets. Here, because there are only 2 fracture sets, probability maps 
could be integrated in a single map (Fig. 8). The values near to 0 suggest 
higher probability for set 1, and the values near to 1 suggest higher 
probability for set 2. 

 
Fig. 8. The probability map of fracture set; values close to 0 indicate higher 

probability for 1st fracture set, and values close to 1 indicate higher probability 
for 2nd fracture set. 

3.3. Orientation modeling 

Orientation of a plane (fracture) could be specified by its Azimuth 
(ϕ) and dip (θ). Each one of fracture sets lies in a particular range of 
azimuth and dip. Using this characteristic, and what is obtained from 
the former sections, and regarding there are N cells in the grid, If ith cell 
contains n_i fracture, the following procedure is suggested for 
orientation modeling: 

 Plotting the azimuth cumulative probability function CDF(ϕ) 
according to the initial data and the proportions estimated in the former 
section in ith cell grid 
1. Generating a random value; R(j)=rand[0,1] 
2. Simulating azimuth value using R(j) and CDF(ϕ) 
3. Simulating dip conditioned to the azimuth value 
4. While j≤n_i, go to step 2 
5. While i≤N, go to step 1 

In the following subsection step 1 and 3 are explained in detail. 

3.3.1. Azimuth and dip modeling in cells 

CDF of azimuth in each cell grid is obtained using the initial data and 
the proportions simulated for each fracture set in section 3.2. The CDF 
of fracture azimuth in kth set can be describe in form of: 

CDF(ϕk) = P(ϕmin
k < ϕ < ϕmax

k ) (3) 

Therefore, If the estimated proportions of 1𝑠𝑡. 2𝑛𝑑. … fracture sets be 
denoted by 𝑝1. 𝑝2. … The CDF of azimuth in the cell would be: 

𝐶𝐷𝐹(𝜙) = 𝑃(0 < 𝜙 < 360) = 𝑝1𝑃(𝜙𝑚𝑖𝑛
1 < 𝜙 < 𝜙𝑚𝑎𝑥

1 ) + (𝑝1 +

𝑝2𝑃(𝜙𝑚𝑖𝑛
2 < 𝜙 < 𝜙𝑚𝑎𝑥

2 )) + ⋯ = 𝑝1𝐶𝐷𝐹(𝜙1) + (𝑝1 + 𝑝2𝐶𝐷𝐹(𝜙2)) +

⋯  (4) 
Once 𝐶𝐷𝐹(𝜙) is calculated, the corresponding value to a random 

number 𝑅(𝑗) is considered as the simulated value of fracture azimuth. 
In the present case, if the probabilities of the cell be 1, 0.65, 0.35 and 0, 
the CDF used for simulation would be as shown in Fig. 9. Using 
constructed CDFs corresponding azimuth value to 𝑅(𝑗) = 0.6 , for 
example, would be 82.1, 124.7, 338 and 343, respectively. When the 
azimuth of a fracture is simulated, dip thereupon is simulated 
conditioned to azimuth. For that, a dip value from 𝐶𝐷𝐹(𝜃 ∨ 𝜙)  is 
generated using a random value. 

 

 
Fig. 9. Blue lines: The CDF used for azimuth simulation when obtaining 

different proportions equal to a) 1 b) 0.65 c) 0.35 d) 0; red lines: estimated 
azimuth corresponding to probability equal to 0.6. 

3.3.2. Result of modeling 

Stereonet and contour plots which are depicted in Fig. 10 and Fig. 11, 
respectively, illustrate the final scatter plots of simulated orientation. In 
comparison to the initial data stereonet and contour plots, it can be said 
that scatter plots of orientation are remarkably reproduced. Note that, 
as mentioned before only the major fracture sets are modeled, which 
means fracture set 3 is not modeled here. 

Furthermore, this modeling procedure shows the capability of 
reproducing the proportions of main fracture sets. Fig. 12 compares the 
initial and simulated proportion of each fracture set, which are 
completely identical. In addition, quantile-quantile plot of initial dip 
versus simulated dip and also initial azimuth versus simulated azimuth 
depicted in Fig. 13a and Fig. 14a, respectively, show an accurate 
reproducing of dip and azimuth data. Finally, the fracture network that 
has been developed for the intra-well location is shown in Fig. 15a. 

 
Fig. 10. The stereonet plot of simulated fractures. 
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Fig. 11. The contour stereonet diagram of simulated fractures. 

 

 
Fig. 12. a) Initial proportion of main fracture sets; b) simulated proportion of main fracture set.

a)  b)  

 

 

 
Fig. 13. a) Q-Q plot of initial azimuth versus simulated azimuth, indicating an appropriate fracture azimuth reproducing by simulation; b) initial and simulated 

azimuth histograms. 
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a)  b)  

 

 

  
Fig. 14. a) Q-Q plot of initial dip versus simulated dip, indicating an appropriate fracture dip reproducing by simulation; b) initial and simulated azimuth histograms.

3.4. Orientation modeling using Kent distribution  

Fracture orientation is usually modeled through different 
distributions. One of the most useful models is Kent distribution which 
is a complicated model of Fisher-Bingham distribution in polar 
coordinates [11]. The pdf of Kent distribution when 𝜃 is the average of 
fracture set dip, and 𝜙 is the average of fracture azimuth is given by 
[14]: 
𝐹(𝜃. 𝜙) = 𝑠𝑖𝑛𝜃𝑒𝑥𝑝 [𝜅𝑐𝑜𝑠𝜃 + 𝛽𝑠𝑖𝑛2𝜃(𝑐𝑜𝑠2𝜙 − 𝑠𝑖𝑛2𝜙)]  (5) 

𝐾  is concentration parameter which ranges between 0 and 100. A 
small value of 𝜅 results a wide scatter distribution and a high value of 𝜅 
results a focused one. 𝛽 specifies the amount of anisotropy and its range 
is between 0 and 𝜅 2⁄ . 

 Also the orientation of fracture network is modeled in this paper, 
Using Kent distribution in order to compare its results with the results 
of proposed method. All of the fracture related variables including 
fracture length, density, and aperture are deemed identical, and it is only 
orientation that varies. The parameters for modeling two recognized 
fracture sets are summarized in Table 1. The stereonet plot of 
orientation values is illustrated in Fig. 16, which shows a weak 
reproducing of initial data. 

Table 1. The parameters used for fracture orientation modeling. 

 𝑴𝒆𝒂𝒏(𝜽) 𝑴𝒆𝒂𝒏(𝝓) 𝜿 𝜷 

𝑺𝒆𝒕𝟏 60 338.8 20 5 

𝑺𝒆𝒕𝟐 40.4 77.8 20 10 
a)     

 
(a) 

 
(b) 

Fig. 15 The fracture network simulated by a) the suggested workflow, b) Kent 
distribution. 

 
Fig. 16. The stereonet plot of simulated fractures using Kent distribution. 

4. Connectivity 

Fractures transfer the major part of fluid flow in fractured reservoirs. 
The transfer capacity is greatly influenced by the number of 
intersections occurs between fractures and thereby the orientation of 
them. These intersections make connections among different areas of 
reservoir, which in turn ease the transfer of stream toward producing 
wells. Therefore, estimating a true fracture network connectivity model 
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is the ultimate function of a fracture network that reflects in a proper 
prediction of fluid flow. 

In Fig. 17 the number of intersections in both developed method and 
modeling by Kent distribution is illustrated. By using Kent distribution 
the number of intersections increased dramatically which results in 
highly inter-connected fracture network. On the other hand, the 
developed method results a less inter-connected network. Although the 
authenticity investigation of them is not possible, the reconstruction of 
statistical parameters of our method shows that it may suggest a better 
prediction of fracture network connectivity. 

(a) 

 

(b) 

 
Fig. 17. The number of intersections in grid cells using: a) the suggested 

workflow, b) Kent distribution. 

5. Conclusion 

Orientation modeling highly influences the percolation degree in 
porous media. Applying a suitable model would change the paths of 
which the main stream happens, and even more would influence the 
amount of production in a reservoir. In this paper, a new approach for 
fracture orientation modeling is presented. Variograms, representing 
spatial structure in a geological medium, is modeled by a hole effect 
model, which shows repeatability in fracture sets. Afterwards, 
realizations of sequential indicator simulation employed for allocation 
of probability to each fracture set orientation on the cell grids. These 
probabilities thereafter used for construction of azimuth CDF through 
which azimuth could be simulated as a respond to a random number 
between 0 and 1. Following that, Dip angle is simulated conditioned to 
azimuth. The orientation model of suggested work-flow in comparison 
with built model using Kent distribution shows an accurate 
reproduction of initial data stereonet and histograms. In addition, the 
connectivity, a prominent factor in fluid flow simulation, of suggested 
method was less than the connectivity of modeling based on Kent 
distribution. The suggested method not only honors the statistical 
parameters but also could respect spatial parameters. In theory, SIS has 
shortcomings in producing high quality results, especially in case of 3 
or more fracture sets. Therefore, for future studies it could be suggested 
to study the application of more robust techniques for geostatistical 
simulation of indicators which might produce more satisfactory result. 
In the case of azimuth and dip modeling in cells, one may produce 
numerous realizations to be able to measure the uncertainty of azimuth 
and dip simulation. 
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