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ABSTRACT: The present work solves two-dimensional Advection-Dispersion Equation 
(ADE) in a semi-infinite domain. A variable source concentration is regarded as the 
monotonic decreasing function at the source boundary (x=0). Depth-dependent variables 
are considered to incorporate real life situations in this modeling study, with zero flux 
condition assumed to occur at the exit boundary of the domain, i.e. its semi-infinite part. 
Without losing any generality, one can consider that the aquifer is initially contamination-
free. Thus, the current study explores variations of two-dimensional contaminant 
concentration with depth throughout the domain, showing them graphically. Non-point 
source problem, i.e. the line source problem, can be discussed by solving two-
dimensional depth-dependent variable source problem, as x=0 is a 2D line. A new 
transformation has been used to transform the time-dependent ADE to one with constant 
coefficients, with Matlab (pdetool) being employed in order to solve the problem, 
numerically, using finite element method. 
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INTRODUCTION

 

Groundwater is being contaminated in 

several ways, including industrial effluents, 

municipal garbage, cemeteries, mine spoils, 

etc. During past few decades, there have 

been various studies on groundwater 

contamination at local as well as global 

scales by the groundwater scientists, geo-

environmentalists, civil engineers, 

hydrologists etc. The problem of longitudinal 

dispersion in porous media is solved 

analytically, where the impacts of flows 

without any uniformity and variable 

dispersion coefficients are taken into 

consideration (Gelher & Collins, 1971).  

In the analysis of one-dimensional solute 

transport through porous media with spatial 
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variables retardation factor is under 

discussion (Chrysikopoulos et al., 1990). 

Scale-dependent dispersion and periodic 

boundary conditions have been presented 

for solute transport in porous media (Logan, 

1996), while solute transport in saturated 

porous media with semi-infinite or finite 

thickness has been solved analytically (Sim 

& Chrysikopoulos, 1999).  

Fractional Advection-Dispersion 

Equation (FADE) have been applied and 

the dispersion parameters (independent of 

time or distance) used, where the scaling 

behavior of plumes undergoes Levy motion 

and is solved analytically by Greens 

function method (Benson et al., 2000). 

One-dimensional simulation of solute 

transfer in saturated-unsaturated porous 
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media, using the discontinuous finite 

element method, has been discussed (Diwa 

et al., 2001). And for groundwater flow 

and radionuclide transport in a single 

fracture, analytical solutions have been 

explored with diffusion in surrounding 

rock matrix, using the symmetry reduction 

method (Saied & Khalifa, 2002).  

An analytical solution for transient, 

unsaturated transport of water and 

contaminants through horizontal porous 

media has been presented with a range of 

analytical solutions, using similarity 

solutions for contaminant transport in 

unsaturated flow, derived using scale and 

time-dependent dispersivity (Sander & 

Braddock, 2005). Both analytical solution 

for transportation of decaying solutes in 

rivers with transient storage and first-order 

decay for non-conservative solutes, have 

been derived (Smedt, 2006). For pore-scale 

modeling of transverse dispersion in porous 

media, there has been a comparative study 

of transverse dispersion, experimenting on a 

range of Peclet numbers to successfully 

predict the tendency of the asymptotic 

macroscopic dispersion coefficient (Bijeljic 

& Blunt, 2007).  

Analytical solutions for sequentially-

coupled one-dimensional reactive transport 

problems have been found (Srinivasan & 

Clement, 2008), and the one-dimensional 

analytical solution has been explored by 

means of Laplace transform technique with 

suitable initial and boundary conditions 

(Singh et al., 2009), as well as Laplace 

Transform Technique (Jaiswal et al., 2011). 

One-dimensional ADE with variable 

coefficients was solved analytically (Sander 

& Braddock, 2005; Singh et al., 2008; Chen 

& Liu, 2011; Chen et al., 2012a; 2012b). 

Analytical solutions of non-linear and 

variable-parameter transport equations for 

verification of numerical solvers were 

presented (Zamani & Bombardelli, 2013). 

The contaminant concentration prediction 

along unsteady groundwater flow was 

discussed (Singh & Kumari, 2014). The 

ADE has been solved analytically for 

contaminant transport in the main fracture, 

surrounded by 2D matrix, in which parallel 

plate and cylindrical geometry are taken 

into consideration (Khalifa, 2003). Radial 

ADE with real life application has been 

considered and solved, analytically (Lai et 

al., 2016). 

Numerical solution of complicated 

problems is frequently obtained by 

researchers and scientists all around the 

globe. One-dimensional solute transport 

equation is solved numerically, using finite 

element and finite difference methods, 

which have then been compared with one 

another (Van Genuchten, 1982). Moreover, 

the numerical correction for finite difference 

solution of advection and dispersion with 

reaction has been discussed and compared 

(Ataie-Ashtiani et al., 1996) and one-

dimensional ADE has been addressed in 

open channel with steady non-uniform flow 

(Ahmad et al., 1999), where in order to get 

the numerical results, finite difference and 

Crank-Nicolson methods were adopted for 

advection and diffusion processes, 

respectively. Numerical solution of 

contaminant transport through unsaturated 

porous media by means of element free 

Galerkin method has been taken into 

consideration (Kumar et al., 2007), with an 

unconditionally stable finite element (FEM) 

approach developed to solve the one-

dimensional FADE, based on Caputo 

definition of fractional derivative that has 

singularity at the boundaries (Huang et al., 

2008). The simulation results could be 

improved by using the third kind of 

boundary with a fractional-order derivative 

as the inlet boundary condition. A semi 

analytical solution has been presented, 

which is based on the numerical solution for 

the transportation of conservative and non-

reactive tracer (Zhang et al., 2012). 

The present problem employed 2D ADE 

to model the system, in which the aquifer is 

initially free from any contamination. It 

also used percolation theory to model the 
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solute transport in porous media in 

geochemistry, geomorphology, and carbon 

cycling (Hunt & Ghanbarian, 2016). The 

contamination, dependent on the time 

and/or space, was considered by previous 

researchers (Singh et al., 2009; Singh & 

Kumari, 2014; Singh et al., 2015) and 

analytic solutions were derived for aqueous 

and solid phase colloid concentrations in a 

porous medium, where colloids are subject 

to advective transport and reversible 

retention, dependent on time and/or depth 

(Leij et al., 2016). A fully-coupled depth-

integrated model was considered and 

solved for surface water and groundwater 

flow; however, it differed from this 

problem (Li et al., 2016). 

It is interesting to observe the case in 

hydrological aspects when the source is 

depth dependent variable, for as the depth 

increases or decreases, the source may vary 

too, accordingly, showing some impacts on 

the aquifer system. This variable source 

problem was explored too, as a non-point 

line-source problem, likely to be interesting 

for researchers who work on groundwater 

problems and Vedas zone hydrology. The 

velocity of groundwater was considered 

unsteady with solute transport occurring only 

in positive direction of x-axis, i.e. not against 

the direction of the flow. Matlab (pdetool) 

was used to solve the problem numerically, 

using finite element method. Figure 1 

illustrates the physical model of the problem. 

 

Fig. 1. Model of the system 

MATHEMATICAL FORMULATION 
A depth-dependent variable source of 

contamination was considered through the z-

axis, i.e. the inlet boundary, shown in Fig.1. 

A flux type boundary condition was taken 

into account at the semi-infinite extent 

( ,x z  ) of the aquifer, i.e., at the outlet 

boundary. The aquifer, itself, was initially 

contamination-free. A function 0( ) zg z c e  

was considered to describe the source 

concentration at x= 0 and z>0, so this source 

acted throughout the depth axis, 

demonstrated in the Figure 1. It acted like a 

horizontal line source in inhomogeneous 

medium. In order to model the contaminant 

transport in the porous medium and the 

aquifer aquitard system, ADE was used. 

Groundwater has specific velocity and 

dispersion rate along various axes, where 

dispersion works in every direction of the 

domain; however, the major part of velocity 

acts along the x-axis. So in our recent 

problem we may be able to consider that 

there is no velocity along the z direction, and 

it only works in the positive x direction. 

Nevertheless, dispersion works on both x and 

z directions, as considered earlier. Two-

dimensional ADE was taken into 

consideration so that the system with time 

dependent velocity and dispersion coefficient 

could be modelled. According to hydrology 

literature, we may manage to assume that 

dispersion is directly proportional to velocity. 

Mathematical modeling of the two-

dimensional system is as follows: 

2 2

2 2
( )zx

C C C C
D D u T

T x z x

      
  

   
 (1) 

The initial and boundary conditions are 

as follows: 

( ,z, ) 0, 0, , 0,    C x T T x z  (2) 

( ,z, ) ( ), 0, z 0, 0,C x T g z x T     
 

(3) 

0and ,wh0 en
  
  

 

C C
x z

x z  
(4) 

where C' stands for the contaminant's 

contamination; T' for the time taken; and 
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andx zD D  for time-dependent dispersion 

along x and z directions, respectively. 

Furthermore, u(T') represents the velocity of 

the medium, transporting the solute particles 

along x axis, as we considered that it was on 

velocity, along z direction; 0c  is constant. 

Numerical solution 
Both velocity and dispersion are functions of 

time, i.e. 0 ( )u u f T 
 and 1 ( ')xD au D f T   

with 2 ( ')zD bu D f T  , respectively where a 

and b are dispersivities with 0 1au D  and 

0 2bu D . According to dispersion theory, 

dispersion is directly proportional to the 

velocity. Here ( )f T   was regarded as an 

exponentially-decreasing function, i.e. 

exp( )mT  . This present paper also 

considered a fixed value of m=0.01. 

Consider, 
'

0

( ') '

T

T f t dt   (5) 

We used (5) on (1)-(4), getting the 

transform equations as follows:  

2 2

02 21 2

C C C C
D D u

T x z x

      
  

   
 (6) 

The initial and boundary conditions are 

as follows: 

( ,z, ) 0, 0, , 0,C x T T x z     (7) 

( ,z, ) ( ), 0,z 0, 0,    C x T g z x T
 

(8) 

0and ,wh0 en
  
  

 

C C
x z

x z  
(9) 

Now we considered the transformation 
'

exp( )

C
C

z



 and using this transformation on 

(6)-(9), we got the transform equation as 

follows: 

2 2

2 2

0 2

1

2

2

( 2 )

  
  

  


 



C C C
D D

T x z

C
u D D C

x

 (10) 

The initial and boundary conditions are 

as follows: 

( ,z, ) 0, 0, , 0,C x T T x z    (11) 

0( ,z, ) , 0, z 0, 0,C x T c x T   
 

(12) 

0and when0 ,
 

   
 

C C
C x z

x z  
(13) 

Now equations (10)-(13) become ADE 

with constant coefficients and constant 

boundary conditions. As a result, we used 

Matlab in built function (pdetool) to solve 

this problem numerically, using finite 

element method. Where this FEM package 

implemented piecewise linear finite elements 

for 2D problems, being intended to 

accompany "Partial Differential Equations: 

Analytical and Numerical Methods" (second 

edition) by Mark S. Gockenbach. 

RESULT AND DISCUSSION 
The present work solved two-dimensional 

ADE, where the source depended on another 

variable, namely the depth, meaning that the 

contaminant's contamination decreased or 

increased with the depth. It was considered 

that the aquifer was initially contaminant-

free. Figure 2 shows initial dispersion D1= 

0.1 km
2
/year and D2= 0.1 km

2
/year, initial 

velocity µ0= 0.09 km/yaer and fixed time t0= 

10 year to get the concentration profile with 

depth and distance. If we consider the change 

of z, we then see that the contaminant 

concentration peak is the highest at z=0 and 

whenever z increases the peak of the 

concentration declines, accordingly, as the 

source term is also decreased. From Figure 2, 

it can also be observed that after a certain 

distance the contaminant concentration 

decreased, tending towards zero. It is also 

clear from Figure 2 that when z as well as x 

ascended, then the pollutant inflicted more 

impact, i.e. it took much distance to lose its 

harmful nature. The contaminant 

concentration depended on the depth, which 

can be observed by solving two-dimensional 

ADE with line source problem, while the 

contaminant concentration depended on the 

depth. 

Figure 3 shows contaminant 
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concentration with depth and distance by 

using contour plotting. It is clear from 

Figure 3 that near z= 0 km, the 

contaminant concentration was maximum 

and after z= 0.7 km, it became negligible. 

It is also clearly observed from the figure 

after what distance, we can safely use the 

groundwater. Both of the concentration 

profiles asymptotically tended to zero after 

a certain distance. It is also observed that 

although the concentration was higher at 

the beginning, it was neutralized after some 

distance and depth. Figure 4 shows the 

deformation of the domain as mesh/grid 

and, simultaneously demonstrating the 

contaminant concentration level.  

 

Fig. 2. Contaminant concentration with depth and distance variables for fixed time t0= 10 years 

 

Fig. 3. Contour plotting of contamination level with distance and depth 
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Fig. 4. Contaminant concentration with depth and distance with deform mesh  

Implementation 
We can find some real life application of 

the system, as the contaminant decreased 

the soil, due to dispersion and gravity, only 

to lose its contamination level, afterwards. 

More than 95% of the samples were 

collected from streams, and almost 50% of 

them, collected from wells, contained at 

least one pesticide (Gilliom et al., 1999). 

The impact of pesticides on streams and 

groundwater has been discussed where 

pesticides are commonly found in streams 

than in groundwater. It has been found that 

more than 50% of the wells in shallow 

groundwater and 33% of the deeper wells 

in major aquifers are contaminated with 

one or more pesticides (Gilliom, 2007). 

The authors discussed the mobility and 

degradation of pesticides in soils as well as 

the pollution of groundwater resources 

about the influence of physical and 

chemical characteristics of the soil on the 

sorption/desorption and degradation of 

pesticides and their access to groundwater 

and surface waters (Arias-Estévez et al., 

2008). So it is clear from the study that the 

waste or contaminants would permeate the 

soil and these contaminants could behave 

like a non-point depth-dependent source in 

the real life situation. Here as we 

considered that x= 0 in the boundary 

condition, the non-point source became 

line-source. So this concept may be of 

interest to researchers, working on surface 

water hydrology or soil contamination 

problem. 

We may present a real life scenario as 

an example of this type of model. Some 

industries drown their wastes into the soil, 

which may in turn mix with the aquifer. 

After a certain span of time, they drown 

their wastes into the soil at different depths 

and subsequently the aquifer may be 

contaminated with depth-dependent 

sources, too. There are some contaminants, 

existing in the atmosphere, undergoing 

some decay with the depth, which can also 

be modeled using this formulation.  

CONCLUSION 
We may conclude from this study that: 

1. By addressing and solving two-

dimensional depth-dependent source 

problem via finite element method, it can 

be shown that depth-dependency affects 

groundwater contamination problem, 

which is not yet considered. 

2. A non-point line source problem can 

also be interpreted by solving two-

dimensional depth dependent problem as 
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we consider the source is acting entirely on 

the z axis, which is a line source. 

3. The peak of contaminant 

concentration can be reduced significantly 

after a certain distance and it may be 

further reduced to a constant value.  
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