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ABSTRACT 

Crop type identification is a prerequisite for several agricultural analyses. Thus, various methods have been 

used to accurately identify different crop types. Classification of satellite image time-series (SITS) data is 

probably the most efficient one, among these methods. Recently, the SITS data with high spatial and 

temporal resolution have become widely available. This category of SITS data, in addition to information 

about the temporal phenology of crops, provides valuable information about the spatial patterns of the 

croplands. This information, if extracted properly, can increase the accuracy of crop classification. In this 

paper, we proposed a novel feature extraction algorithm in order to extract this information. The proposed 

feature extraction algorithm is a two-step algorithm. In the first step, an image segmentation method is used 

to partition the time-series data into several homogenous segments. The pixels of each segment share similar 

spatial and temporal characteristics. In the second step, the algorithm fits a polynomial function to the 

average value of pixels of each segment. Finally, the coefficients of the fitted polynomial function are 

considered as the spatial-temporal (spatio-temporal) features. The effectiveness of the proposed spatio-

temporal features was evaluated based on their obtained crop classification accuracies. In this paper, the 

SITS data were constructed by extracting normalized difference vegetation index (NDVI) and soil-adjusted 

vegetation index (SAVI) from 10 RapidEye images of an agricultural area. Support vector machines (SVM) 

was considered as the classification algorithm. The obtained results of the experiments showed that the 

proposed spatio-temporal features by proving the classification accuracy of 87.93% and 75.96% respectively 

for NDVI and SAVI time-series can be very efficient features for crop mapping. These features also sharply 

improved the crops classification accuracy in comparison with other spatial and temporal features.  
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1. Introduction 

Crop production plays a key role in human food security, 

and it also contributes to the economic growth of the country. 

Thus, several agricultural analyses and studies have been 

conducted in order to sustain and improve the level of crop 

production. In most of these analyses, such as crop acreage 

estimation, yield forecasting, detecting crop disease, and pest 

infestations, there is a need to know crop types as basic input 

information (Jackson, 1986; Mirik et al., 2012; Prasad et al.,  

 

2006).  

Remote sensing (RS) can be used for crop type 

identification  as one of the most informative and efficient 

information sources (Li et al., 2014). Crop maps, which show 

the spatial distribution of different crop types, can be 

obtained through classification of RS images. Nonetheless, 

because of the dynamic spectral behavior of crops during 

their growing season, the information content of a single-
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sufficient fornotistime image accurate crop mapping 

(Gerstmann et al., 2016). Thus, crop maps are usually 

obtained through classification of satellite image time-series 

(SITS) data (Löw et al.,  2015). 

 SITS data consist of satellite images acquired from the 

same geographical area over a period of time (Jonsson & 

Eklundh, 2004). For conducting many of agricultural 

analyses such as crop mapping, it is a common practice to 

construct the SITS data from different vegetation indices 

extracted from the images acquired at different times 

(Gerstmann et al., 2016). This category of SITS data is 

referred to as VI-SITS, in this paper. 

VI-SITS data analyses are very well-studied in RS 

literature. Vegetation indices obtained from sensors with 

coarse spatial resolution, such as moderate resolution 

imaging spectroradiometer (MODIS), advanced very-high-

resolution radiometer (AVHRR), and satellite 

pourl’observation de la terre-vegetation (SPOT-Vegetation), 

due to their short revisit times, have been used to construct 

very long and consistent VI-SITS data. Because of the strong 

correlation between the value of the vegetation index through 

time and the growing stages of plants, such time-series data 

can be used to study the changes in the timing of plants’ 

seasonal events (i.e., phenology of plant) at local and global 

scales (Jamaliet al., 2014; Meroni, Verstraeteet al., 2014; 

Spruce et al., 2011; Zhou et al., 2013). These seasonal events 

can be considered as an important indicator of climate 

changes as well as an indicator of plant health status (Pan et 

al., 2015).   

The time- profileseries s from differentobtained

vegetation indices are usually analyzed to extract some 

metrics that characterize the phenology of the plants (DeFries 

et al., 1995; Hill & Donald, 2003). Area under the profile, 

minimum and maximum values of the index and the 

respective times of their occurrence, and the amplitude of the 

profile are some examples of these metrics (Jonsson & 

Eklundh, 2004). 

Although the phenological metrics obtained from VI-

SITS data with coarse spatial resolution are applicable in 

several agricultural applications, but they could not be   

suitable for crop mapping. This is because the field sizes of 

most crops are much smaller than the spatial resolution of 

these data.  

The advent of new generation of sensors such as 

RapidEye and Sentinel-2 has made the SITS data with high 

spatial and temporal resolutions widely available. The SITS 

data extracted from these sensors, in addition to being useful 

for several agricultural applications such as plant health and 

growth status monitoring (Ali et al., 2015; Bach et al., 2012; 

Kross et al., 2015), can also be exploited for accurate crop 

mapping (Niazmardi et al., 2018). 

 The VI-SITS data obtained from this category of sensors, 

due to their high temporal resolution can be used for accurate 

estimation of phenological metrics (Pan et al., 2015). 

Furthermore, the high spatial resolution of these data 

provides valuable information about the spatial patterns of 

the scene. These two types of information, if extracted and 

modeled properly, can dramatically increase the performance 

of crop mapping. In spite of the importance of these 

information types, only a few feature extraction methods 

have been already proposed for simultaneous extraction of 

both spatial and temporal (spatio-temporal) features form 

time-series data. As an example, the grouped frequent 

sequential pattern extraction method was used to extract 

spatio-temporal features from normalized difference 

vegetation index (NDVI) time-series of SPOT sensor (Julea 

et al., 2012). These patterns reveal useful information in 

support of agricultural monitoring, but they cannot be used 

for classification purposes. Wagenseil and Samimi proposed 

another spatio-temporal feature extraction method for the VI-

SITS data obtained from SPOT-vegetation sensor. They used 

the VI-SITS data from two successive growing seasons and 

assumed that the SITS data are periodic. Then, the Fourier 

analysis was used to obtain the spatio-temporal features 

(Wagenseil & Samimi, 2006).  

The spatio-temporal feature extraction algorithm that 

have been already proposed in the RS literature are not 

suitable for crop mapping or they make some assumptions 

about the data which confine their application. Thus, in this 

paper, we proposed a two-step spatio-temporal feature 

extraction algorithm for VI-SITS data. The first step of the 

algorithm is aimed to model and extract the spatial patterns 

of croplands. To this end, it uses an image segmentation 

algorithm to partition the time-series data into several 

homogeneous segments. The purpose of the second step is to 

extract the phenological metrics from each segment as the 

temporal features. However, extracting the common 

phonological metric is time-consuming and requires tuning 

several parameters (Jonsson & Eklundh, 2004). To address 

this issue, we proposed to fit a polynomial function to the 

time-series profile and use its coefficient as the temporal 

features. These features, once extracted can be used with the 

value of the time-series index to enhance the crop 

classification performance. 

 The main novelty of this paper is proposing a spatio-

temporal feature extraction algorithm for crop mapping using 

VI-SITS data. Therefore, the proposed algorithm is the only 

spatio-temporal feature extraction algorithm which makes no 

assumption about the data. In addition, we proposed using 

polynomial functions instead of common phonological 

metrics as the temporal features. 

asorganizedpaper areof thisremaining partsThe

 

 

 

follows.  The  proposed  feature  extraction strategy  is 
presented in Section 2. Section 3 describes the data set and

the  experimental  setups. The obtained  results  are  provided 
and  discussed  in  Section  4  and  finally, the  conclusions  are 

drawn in Section 5.  
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2. Proposed feature extraction algorithm 

Assume that there are n  co-registered images with the 

dimension of 1 2m m , acquired at n different times 

, 1,2,..., .iT i n  Extracting a vegetation index from these 

images generates a VI-SITS data with dimension of 

1 2m m n  . In the proposed algorithm, the following two 

steps are considered for extracting the spatio-temporal 

features from such a time-series data. 

 

2.1 Step 1: data segmentation 

Including the spatial information in the classification 

process can increase its performance (Daya Sagar & Serra, 

2010). The performance of crop mapping can also be 

improved by inclusion of the spatial information about the 

croplands in the classification. Accordingly, the first step of 

the proposed algorithm is to extract the spatial information 

for crop classification. There have been several methods 

proposed for extracting spatial features that model the spatial 

information of data. However, the proposed feature 

extraction algorithm takes advantage of image segmentation 

methods to extract spatial patterns from the time-series data. 

The purpose of image segmentation algorithms is to partition 

the time-series data into several homogeneous segments. 

Each segment contains a group of pixels which are spatially 

close to each other and share similar temporal characteristics. 

Several image segmentation methods have been proposed, 

which can be used in this step. However, in this paper, the 

multiresolution segmentation, implemented in eCognition 

developer software due to its good performance, was adapted 

as image segmentation algorithm (Definiens, 2009). 

 Once the image segmentation is conducted, different 

characteristics of each segment can be calculated using 

various measures. In this study, only the average value of the 

pixels of each segment is considered. 

 

2.2 Step 2: polynomial fitting 

The second step of the proposed algorithm aims to extract 

the temporal features from each segment. As mentioned 

earlier, phenological metrics are usually extracted from time-

series data as temporal features. Extracting these metrics 

requires a pre-processing step to smooth the time-series 

profiles, which can be very time-consuming. In addition, a 

parameter tuning step is required to estimate some of the 

phenological metrics, such as start and end of the growing 

season (DeFries et al., 1995; Jonsson & Eklundh, 2004). 

To address these issues, we proposed considering the 

coefficients of polynomial functions, fitted to the time-series 

profiles, as the temporal features. Accordingly, at its second 

step the proposed feature extraction algorithm fits a 

polynomial function to the average value of each segment. 

The coefficient of such a polynomial can be considered as 

spatio-temporal features, since they can capture both spatial 

and temporal patterns of the time-series data. Figure 1 shows 

the block diagram of the proposed feature extraction 

algorithm.  

The proposed feature extraction algorithm has several 

advantages over both spatial and temporal feature extraction 

algorithms. Most of the spatial features extraction algorithms 

use a fixed-size neighborhood for extracting the spatial 

features. The effectiveness of these features is affected by the 

neighborhood size. However, the proposed spatio-temporal 

feature extraction algorithm addresses this issue by use of 

image segmentation.  

As mentioned, before estimating the phenological 

metrics, all the time-series profiles should be smoothed in 

order to decrease the effect of noise. This procedure can be 

very time-consuming. However, since the proposed 

algorithm does not consider this step, it is computationally 

more efficient than the methods which use phenological 

metrics as temporal features.  

However, for extracting the proposed spatio-temporal 

features the polynomial degree should be set by the user. This 

parameter controls how well the polynomial functions are 

fitted to the time-series profiles.  

 

3. Data set and experimental setup 

3.1 Data set 

Experimental analyses were conducted using SITS data 

composed of atmospherically corrected and ortho-rectified 

RapidEye images. These images were acquired with the 

spatial resolution of 6.5 m at 10 different dates, during 2012 

growing season from southwest of Winnipeg, Manitoba, 

Canada (see Table 1 for dates of acquisition). These images 
were collected to support the calibration/validation campaign 

of NASA’s soil moisture mission (Soil Moisture Active-

Passive satellite: SMAP) (McNairn et al., 2015). In this 

study, the images were resampled to the spatial resolution of 

10 m. After resampling, each image has the dimension of 

1500×1500 pixels.  

In order to show the effectiveness of the proposed spatio-

temporal features, we constructed two VI-SITS data sets by 

extracting normalized difference vegetation index (NDVI) 

and the soil adjusted vegetation index (SAVI) from the 

images (Huete, 1988; Rouse et al., 1974). These vegetation 

indices due to their simplicity and good performances have 

been widely used in the RS literature (Geerken et al  2005; 

Simonneaux et al., 2008; Verhegghen et al., 2014). For 

estimation of SAVI, the canopy background adjustment 

factor was set to 0.5. 
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Figure 1. Block diagram of the proposed spatio-temporal feature extraction algorithm  

 

 

In the experiments, we selected 70 fields of 6 different 

dominating crops in this region. For each crop, one of the 

fields was randomly selected as the training field, from which 

the training samples were again randomly selected. In 

addition, 3000 samples were randomly selected from all the 

fields of each crop as the testing samples. The crop types 

used for the crop mapping, their respective number of 

available fields, as well as the number of their training and 

testing samples are tabulated in Table 2. Figure 2 shows the 

true color composites of different images used in the 

experiments.  

 

3.2 Experimental setup 

Two different experiments were conducted to evaluate 

the effectiveness of the proposed spatio-temporal features for 

crop mapping. The goal of the first experiment is to analyze 

how the polynomial degree affects the classification 

accuracy of the proposed spatio-temporal features. In this 

experiment, the spatio-temporal features, extracted by 

considering different values for the polynomial degrees, were 

classified and compared based on their classification 

accuracies. We selected the polynomial degrees from the 

range of 2 to 6 with an increment step size of 1. 

 aimedThe second experiment compareto the 

proposed spatioclassification results of the -temporal 

features with those obtained using the other spatial and 

temporal features. The following features were considered 

for comparison in this experiment: 

 

 Raw values of vegetation index time-series. These 

values can be considered as temporal features. 

 Mean and homogeneity features estimated from 

gray level co-occurrence matrix (GLCM) were 

extracted from VI-SITS data, as spatial features. 

These features, represented as GLCM-mean and 

GLCM-Homogeneity, were calculated by varying 

the spatial window size in a range [5-21] an 

increment step size of 2. 

 As anothe spatior - feature,temporal an image 

segmentation algorithm was used to obtain the 

segments and then the phenological metrics were 

extracted from each segment. Area under profiles, 

minimum and maximum values of the index and 

occurrenceoftimetheir respective and, the 

amplitude of index are considered as the 

phenological metrics. These features are denoted as 

spatio-temporal phenology features.   

In order to obtain image segments in both experiments, 

we used the multiresolution image segmentation algorithm 

which has three open parameters, namely scale, shape, and 

compactness (Benz et al., 2004). In the experiments, we set 

the values of these parameters to 5, 0.05 and 0.5 respectively. 

These values were obtained through trying different sets of 

values for these parameters and selecting the best one based 

on the visual comparison of the results. 

 

Table 1. Acquisition dates of different RapidEye images 

number Acquisition Date 

1 14 May 2012 

2 20 May 2012 

3 4 June 2012 

4 28 June 2012 

5 5 July 2012 

6 21 July 2012 

7 19 August 2012 

8 29 August 2012 

9 9 September 2012 

10 14 September 2012 

 

 

Table 2. Number of fields and samples per crop used for training 

and testing 

Class Number 

No Name Fields Training Testing 

1 Corn 6 312 3000 

2 Canola 15 673 3000 

3 Wheat 15 597 3000 

4 Soy 15 635 3000 

5 Oat 15 290 3000 

6 Sunflower 4 320 3000 

Total 70 2827 18000 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

 

 

 (j)  

Figure 2. True color composite images of different dates during the 2012 growing season for the time-series used in this 

study: (a) 14 May ; (b) 20 May;  (c) 4 Jun; (d) 28 Jun; (e) 5 Jul; (f) 21 Jul; (g) 19 Aug; (h) 29 Aug; (i) 9 Sep; (j) 14 Sep 
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Although all classification algorithms can be used for 

classifying the proposed features, in this paper we used 

support vector machines (SVM) as classification algorithm. 

The SVM algorithm was selected due to its theoretical 

properties and its proven empirical effectiveness (Camps-

Valls & Bruzzone, 2005; Mountrakis et al., 2011). To 

implement the SVM algorithm, the radial basis function 

(RBF) was considered as the kernel function. The RBF 

kernel parameter was tuned in the range [0.01-10] with a step 

size of 0.5 by using a 5-fold cross-validation. Furthermore, 

the trade-off parameter of the SVM algorithm was also 

selected from the range [0.1-2000] with an increment step 

size of 100 by using a 5-fold cross-validation. 

 

4. Experimental Result 

4.1 Effects of polynomial degree on the accuracy of crop 

mapping  

In this experiment, the performances of the proposed 

spatio-temporal features were evaluated by considering 

polynomial functions with different degrees. To this end, we 

initially estimated the root mean square error (RMSE) of the 

fitted polynomials with different degrees to both time-series. 

The obtained RMSE values are shown in Figure 3.  

The obtained classification accuracies in term of overall 

accuracy, kappa coefficient and class accuracies are shown 

in Table 3 and Table 4 for NDVI and SAVI time-series 

respectively. Based on these tables, the obtained results were 

unsatisfactory in the case of considering a polynomial of 

small degree (e.g., 2, 3). As an example, classification of the 

spatio-temporal features extracted from SAVI and NDVI 

time-series considering a second-degree polynomial yielded 

the accuracy of 68.12% and 72.63%, respectively. By 

increasing the degree of polynomial, the classification 

performances of the features increases, until it reached its 

maximum at 87.93% and 75.96% for NDVI and SAVI time-

series respectively using the fifth-degree polynomial. By 

further increasing the polynomial degree, a sharp decrease 

was observed in the classification actuaries. This is due to the 

fact that by increasing the polynomial degree, the possibility 

of overfitting increases. Thus, in spite of having a very small 

RMSE, the fitted polynomial cannot correctly model the 

time-series profiles. 

Since the time-series profiles are usually very complex, 

finding the best polynomial degree to correctly fit the data is 

not a straightforward task. Furthermore, the presence of noise 

in the data makes this issue even more challenging. However, 

the polynomial functions with small degrees are always 

preferred over those with higher degrees, because of their 

lower probability of overfitting.  

For a comparison, we showed the average values of 

NDVI time-series profiles of different crops and their fitted 

polynomials (with the degree of 5) in Figure 4. Based on this 

charts, it can be seen that most crops have very similar 

average values at certain times during their growing season. 

Regarding the obtained accuracy of different crops, it is 

observable that wheat was the most challenging crop to 

classify, and in comparison to other crops, its accuracy was 

more affected by the polynomial degree. The results also 

showed that the NDVI time-series always yielded higher 

classification accuracy than the SVAI time-series. 

 
Figure 3. Obtained RMSE of fitted polynomial functions with 

different degrees to both time-series 

 

Table 3. Overall accuracy (OA), class accuracy and the kappa 

coefficient obtained from NDVI SITS using the proposed spatio-

temporal features by considering different degrees for polynomials  

Class 
Polynomial degree 

2 3 4 5 6 

Corn 69.70 80.07 87.00 84.73 82.20 

Canola 99.70 92.40 95.67 99.87 95.67 

Wheat 28.57 48.37 43.73 84.30 53.33 

Soy 52.23 82.13 77.77 79.47 82.50 

Oat 89.43 86.50 80.07 81.30 94.23 

Sunflower 96.17 97.83 96.77 97.93 97.67 

OA 72.63 81.22 80.17 87.93 84.27 

Kappa 0.67 0.77 0.76 0.85 0.81 

 

Table 4. Overall accuracy (OA), class accuracy and the kappa 

coefficient obtained from SAVI SITS using the proposed spatio-

temporal features by considering different degrees for polynomials 

Class 
Polynomial degree 

2 3 4 5 6 

Corn 86.93 98.97 98.87 98.20 93.67 

Canola 85.33 83.27 80.83 85.77 80.30 

Wheat 15.67 10.37 17.60 11.13 11.33 

Soy 45.93 80.47 60.50 80.63 87.30 

Oat 86.60 91.10 86.40 89.53 92.57 

Sunflower 86.23 90.63 89.80 90.50 71.40 

OA 68.12 75.80 72.33 75.96 72.76 

Kappa 0.62 0.71 0.67 0.71 0.67 
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4.2 Comparison between different features 

This experiment tries to compare the obtained accuracy 

of the proposed spatio-temporal features for crop mapping 

with those of the other features. Table 5 and Table 6 show 

the obtained results of crop mapping by considering various 

features. These tables also show the best-obtained accuracy 

from the classification of the proposed spatio-temporal 

features from the previous experiment. 

As shown in these tables, the proposed spatio-temporal 

features due to proper modeling of both spatial and temporal 

patterns of the time-series data yielded much higher 

accuracies in comparison with the other features. 

Here, the raw values of the time-series were considered 

as the temporal features. It can be seen that these features 

yielded the accuracy of 75.36% and 70.76% for NDVI and 

SAVI time-series respectively. By including the spatial 

features of GLCM-mean, the performance of the 

classification showed a marginal improvement. However, 

the GLCM-Homogeneity by providing 54.85% and 38.17% 

for classification accuracy showed very weak performances. 

The weak results obtained from the GLCM-homogeneity 

features is due to the fact that the crop fields in this area are 

very homogenous, so they cannot be discriminated 

considering their homogeneity levels which are estimated by 

GLCM-homogeneity feature. 

The spatio-temporal phenology features showed weaker 

results in comparison with the temporal features. This may 

happen due to the strong correlation between the 

phonological features extracted from image segments by the 

time-series values of the segments.  

In this experiment, the NDVI time-series always 

provided higher classification accuracies than the SAVI 

time-series regardless of the used features.  

 

 

Figure 4. Average value of NDVI for different crops and the fitted polynomial functions  

 

Table 5. Overall accuracy (OA), class accuracy and the kappa coefficient obtained from crop mapping by considering different features 

extracted from NDVI SITS 

Class 

Feature type 

temporal Spatial  Spatio-temporal 

Raw values 
GLCM- 

Mean 

GLCM-

Homogeneity  

Phenology 

features 

Proposed 

features 

Corn 83.57 71.5 81.4 65.90 84.73 

Canola 94.50 83.5 87.37 99.80 99.87 

Wheat 26.13 66.27 40.33 13.67 84.30 

Soy 67.10 55.17 35.67 67.93 79.47 

Oat 82.9 88.63 33.87 90.63 81.30 

Sunflower 97.97 96.03 50.47 82.63 97.93 

OA 75.36 76.85 54.85 70.09 87.93 

Kappa 0.70 0.72 0.46 0.64 0.85 
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Table 6. Overall accuracy (OA), class accuracy and the kappa coefficient obtained from crop mapping by considering different features 

extracted from SAVI SITS 

Class 

Feature type 

temporal Spatial Spatio-temporal 

Raw values 
GLCM- 

Mean 

GLCM-

Homogeneity 

Phenology 

features 

Proposed 

features 

Corn 94.80 97.60 47.83 76.07 98.20 

Canola 92.87 90.33 49.17 82.67 85.77 

Wheat 15.00 10.87 20.17 12.50 11.13 

Soy 75.17 49.67 41.97 31.67 80.63 

Oat 57.07 96.40 23.40 86.13 89.53 

Sunflower 89.63 95.00 46.47 79.97 90.50 

OA 70.76 73.31 38.17 61.50 75.96 

Kappa 0.65 0.68 0.26 0.54 0.71 

 

 

Based on the results wheat and soy showed the lowest 

class accuracies by use of different features. The highest 

class accuracy of these two crops was obtained by the 

proposed spatio-temporal features from the NDVI time 

series, which was 84.30% for wheat and 79.47% for soy. For 

a qualitative analysis, Figure 5 shows the obtained crop maps 

by considering raw NDVI values and the proposed spatio-

temporal features. As shown in Figure 5, the obtained crop 

maps of the proposed spatio-temporal feature are not only 

more accurate but also, due to use of the spatial information, 

are smoother than the crop map obtained from raw time-

series values. 

 

5. Conclusion 

Time-series data constructed from the images of sensors 

with high spatial resolution and short revisit times can 

provide very valuable information regarding spatial and 

temporal patterns of crops during their growing cycles. This 

information, if properly extracted, can be used for producing 

accurate crop maps. In this paper, we proposed a new 

algorithm for extracting spatio-temporal features from time-

series of vegetation indices. The proposed algorithm consists 

of two steps. In the first step, the spatial patterns of the time-

series data are modeled using an image segmentation 

method. In the second step, a polynomial function is fitted to 

the average value of the pixels belong to each segment and 

its coefficients are used as the spatio-temporal features.  

The obtained results of our experiments showed that the 

proposed spatio-temporal features, due to their ability to 

extract and model both the spatial and the temporal patterns 

of the time-series data, can provide higher classification 

accuracy for crop mapping in comparison to common 

temporal, spatial and spatio-temporal features. 

In addition, based on the results, it can be concluded that 

polynomial functions can properly be exploited as the 

temporal features. However, the polynomial degree highly 

affects the classification performance of these features.  

Using a low degree polynomial may fail to correctly model 

time-series profiles. However, increasing the degree may 

increase the chance of overfitting.  

Despite the promising results of the proposed spatio-

temporal features in this study, there are some issues that 

need to be studied further. Evaluating the performance of 

other functions such as splines for modeling the time-series 

profiles and the use of meta-heuristic optimization methods 

for optimizing the polynomial degree are amongst these 

issues. 
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(a) (b) (c) 

 Corn   canola   wheat   soy   oat   sunflower 
 

Figure 5. Crop maps obtained through the classification of different features of NDVI time-series (a) Raw values; (b) proposed spatio-

temporal feature; and (c) testing fields  
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