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Two types of rod-coil block copolymers including poly(3-hexylthiophene)-block-poly(ethylene glycol) (P3HT-
b-PEG) and PEG-block-polyaniline (PANI) were synthesized using Grignard metathesis polymerization, 
Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-
seeding methodology to investigate the coily and rod blocks in grafted brushes and ordered crystalline 
configurations. The conductive P3HT fibrillar single crystals covered by the dielectric coily PEG oligomers 
were grown from toluene, xylene, and anisole, and characterized by atomic force microscopy (AFM) and 
grazing wide angle X-ray scattering (GIWAXS). Longer P3HT backbones resulted in folding, whereas shorter 
ones had a high tendency towards backbone lamination. The effective factors on folding of long P3HT 
backbones in the single crystal structures were the solvent quality and crystallization temperature. Better 
solvents due to decelerating the growth condition led to a higher number of foldings. Via increasing the 
crystallization temperature, the system decreased the folding number to maintain its stability. Poorer 
solvents also reflected a higher stacking in hexyl side chain and π-π stacking directions. The dielectric 
lamellar PEG single crystals sandwiched between the PANI nanorods were grown from amyl acetate, and 
analyzed using the interface distribution function (IDF) of SAXS and AFM. The molecular weights of PANI and PEG blocks 
and crystallization temperature were focused while studying the grown single crystals.

1. Introduction
Semiconducting polymers particularly poly(3-
hexylthiophene) (P3HT) have been widely studied 
in semiconductor devices like solar cells [1–11], 
field effect transistors [12–16], light emitting 
diodes [17], chemical sensors [18] and thin film 
transistors [19]. In conductive materials field, the 

large single rectangular crystals of regioregular 
octamer of 3-hexyl-thiophene (3HT)8 [20,21], well-
defined single crystalline nanowires of conjugated 
poly(p-phenylene ethynylene) derivatives [22], 
single  P3HT nano-whiskers [23], one dimensional 
(1D) microwire P3HT single crystals [24,25] 
and self-organized two dimensional (2D) P3HT 
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supramolecules [26,27] were reported. The 
principle method for single crystal preparation 
was the self-seeding procedure [28–30]. Kim et al. 
[24] worked on one dimensional single crystalline 
P3HT microwires grown by the self-assembly 
process in dilute chloroform solution. In another 
work, the scrolled half-ring crystals were reported 
for P3HT-based materials [31]. The thermal and 
optical properties of P3HT homopolymers and 
block copolymers were also focused [32]. The P3HT 
and poly(3-octylthiophene) (P3OT) single crystals 
were also prepared via vapor annealing and solvent 
evaporation by Xiao et al. [33,34]. Rahimi et al. [20] 
demonstrated that the large single crystals can be 
grown from both short regioregular oligomers and 
long P3HT chains. They also reported that charge 
transport through the single crystal was anisotropic 
[21]. The P3HT single crystals absorbed light at 
higher wavelengths compared to spin cast films 
and thus a remarkable red shift occurred [35]. The 
crystalline whiskers [36], crystalline nanofibrils 
[37,38], and single crystalline 2D nanosheets [39] 
were also reported for P3HT.

In the family of π-conjugated polymers, 
polyaniline (PANI) has also unique properties such 
as diverse structures, good environmental stability, 
low cost and simple acid/base doping/dedoping 
chemistry [40,41]. The PANI is a promising material 
for a wide range of applications in different fields, 
for example, anticorrosion coatings [42], batteries 
[43], potentiometric sensors [44], membranes [45], 
antistatic coatings [46], electromagnetic shields 
[47], catalyst [47], high-rate supercapacitors [48,49] 
and fluorescent sensing for nucleic acid detection 
[50]. The novel patterned structures of nano/micro 
conductive-dielectric channels designed by single 
crystals were recently reported, in which the PANI 
nanorods were tethered onto a crystalline substrate 
as polymer brushes [51]. The fourth regime or 
extremely extended regime of polymer brushes was 
also innovated based on conductive PANI brush-
covered single crystals [52]. From the perspective of 
characterization, the polymer single crystals were 
investigated using atomic force microscopy (AFM) 
[53–60], X-ray scattering [51,61], transmission 
electron microscopy (TEM) [34,62], field emission 
scanning electron microscopy (FESEM) [24], 
scanning electron microscopy (SEM) [34], and 
small angle neutron scattering (SANS) [63].

In the current work, two types of rod-coil block 
copolymers including P3HT-b-PEG and PEG-
b-PANI were synthesized and used as building 

blocks of crystalline structures by self-seeding 
methodology. The P3HT-b-PEG block copolymers 
reflected the fibrillar crystals composed of stacked 
P3HT backbones, in which the PEG coily blocks 
were accumulated on the crystal surface. On the 
other side, the PEG-b-PANI copolymers led to the 
square PEG single crystals sandwiched between 
PANI nanorods grafted as polymer brushes. Indeed, 
we designed two distinct sorts of single crystals 
by a unique processing approach but various 
configurations to investigate the impact of material 
type on crystalline structure. In grown P3HT-b-
PEG and PEG-b-PANI single crystals, the coily 
PEG blocks were in the roles of accumulated hairy 
brushes and a crystalline substrate, respectively. In 
addition, some other parameters such as molecular 
weight and solvent quality were considered while 
developing and studying the single crystals.

2. Experimental
2.1. Synthesis of P3HT based materials 

Highly regioregular P3HTs (>99%) with different 
molecular weights (Mn

P3HT) and the polydispersity 
index (PDI) of 1.21–1.25 were synthesized using 
Grignard metathesis polymerization [64]. A dry 100 
mL two-neck flask was flushed with N2 and charged 
with 2,5-dibromo-3-hexylthiophene and dried 
THF (30 mL). A 1 M solution of methyl magnesium 
bromide (MeMgBr) in THF was added via a 
syringe, and refluxed for 2 h under an atmosphere 
of nitrogen. 1,3-bis(diphenylphosphino) propane 
nickel(II) chloride (Ni(dPPP)) in 8 mL anhydrous 
THF was added in one portion, and refluxing 
was continued for 100 min. The molar ratio of 
monomer/MeMgBr/Ni(dPPP) as a type for Mn

P3HT 
= 21000 g/mol was 1/1/0.02. Subsequently, the 
reaction mixture was concentrated to 10 mL and 
was dropped in methanol under vigorous stirring. 
The precipitate was collected by filtration and 
washed with methanol. The crude polymer was 
then exhaustively Soxhlet-extracted with methanol 
and hexane to remove residual catalysts and short 
polymer chains.

The P3HT-b-PEG750 rod-coil block copolymers 
were synthesized with Suzuki coupling [65]. The 
PEG, 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl) benzoic acid (DBA), and anhydrous THF 
(60 mL) were added to a two-necked flask under 
nitrogen. Then, N,N-dicyclohexylcarbodiimide 
(DCC) and N,N-dimethylaminopyridine (DMAP) 
were added and the mixture was stirred for 24 h 
at room temperature. The molar ratio of PEG/
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DBA/DCC/DMAP was 0.33/1.16/1/1 [65]. The 
precipitation was filtered off, and the mixture was 
then poured into diethyl ether. The precipitation 
was collected by filtration and washed with 
diethyl ether. The product was accomplished 
by column chromatography on silica with 
dichloromethane:methanol (10:1) to acquire the 
polymer. To a two-necked flask equipped with a 
stopcock were added P3HT-Br, PEG-BE, palladium-
tetrakis(triphenylphosphine) (Pd(PPh3)4), and 
dried toluene (13 mL) under nitrogen. After that 
3 M K2CO3 aq. (3 mL) was added and the mixture 
was stirred at 100 °C for 24 h. The solution was 
concentrated and poured into methanol to give the 
polymer. The polymer was extracted with methanol 
and acetone.

2.2. Synthesis of PANI based materials
The PEG-b-PANI diblock and PANI-b-PEG-

b-PANI triblock copolymers were synthesized by 
an interfacial polymerization [55]. To this end, 
the three macroinitiators (amine-terminated 
polyethylene glycol benzoate (ATPEGB)), i.e., 
ATPEGB5000, ATPEGB6000 and ATPEGB35000 were 
first synthesized. The PEG and 4-amino benzoic 
acid (equivalent moles) and xylene (100 mL for 
PEG 5000 and 6000, 120 mL for PEG 35000) were 
taken into a two-necked reaction flask fitted with 
stirrer and a Dean and stark trap. The catalytic 
amount of p-toluene sulfonic acid (PTSA) was 
added to the mixture. The mixture was heated to 
reflux temperature (140 °C). The water of reaction 
was removed as an azeotrope until the reaction 
was completed during refluxing at 140 °C for 5 h. 
The solvent then was removed off under reduced 
pressure and the solid product was dissolved 
in chloroform. The unreacted 4-amino benzoic 
acid was then filtered and the solvent of obtained 
solution was evaporated. The final solid product 
was dried under vacuum for 48 h.

Subsequently, ammonium peroxydisulfate 
(APS) and potassium hydrogen biiodate (PHD) 
was dissolved in sufficient amount of 1 M sulfuric 
acid solution in a 400-mL beaker. This was done 
gently and with minimal agitation along the sides of 
beaker. The aniline/ATPEGB/chloroform solution 
formed lower organic layer and ammonium 
peroxydisulfate/potassium hydrogen biiodate 
solution formed upper aqueous layer. After a short 
induction period from 1 min (using ammonium 
peroxydisulfate) to 15 min (using potassium 
hydrogen biiodate), green polyaniline appeared 

at the interface, migrating into the water phase, 
and finally filling entire water layer. An overnight 
reaction time was generally appropriate to complete 
the reaction. Then, the solid polymer consisting 
aniline homopolymers and block copolymers was 
filtered. The unreacted PEG from etherification step 
was soluble in chloroform and could not enter into 
the structure of copolymers. This precipitate was 
poured into methanol, the aniline homopolymer 
was insoluble in methanol, but PANI-b-PEG-b-
PANI (or PEG-b-PANI) was soluble in this solvent. 
The mixture was stirred for 12 h and then filtered. 
The solid aniline homopolymer was removed off 
and the resulting dark brown solution was purified.

2.3. Single crystal growth
The P3HT-b-PEG single crystals were grown 

in toluene (here best solvent), xylene (as an 
intermediate solvent), and anisole (as a poor 
solvent) using the self-seeding method with the 
concentration of 0.01 wt%. The single crystals 
were grown at different seeding temperatures (Ts) 
and crystallization temperatures (Tc). To reach the 
homogeneous solutions, the prepared dispersions 
were heated for 30 min at 75 °C in toluene, at 85 
°C in xylene, and at 95 °C in anisole. The samples 
were then kept at 0 °C overnight. The next step was 
seeding and was conducted for 3 min at respective 
Ts. Subsequently, the samples were kept at Tc for 3 
days.

The self-seeding procedure was also utilized to 
grow the PEG single crystals covered by conductive 
PANI nanorods. Solution crystallization was 
carried out with a dilute concentration of 0.009 
wt% in amyl acetate. The vials containing PEG-b-
PANI diblock and PANI-b-PEG-b-PANI triblock 
copolymers were sealed and kept at dissolution 
temperature (Td = 70 °C) for 30 minutes. The 
samples were then kept at primary crystallization of 
0 °C for 5 h and the self-seeding temperature of Ts = 
41 °C for 20 min. The vials were then transferred 
into an isothermal oil bath set at crystallization 
temperature and were maintained for 3 days to 
complete the single crystal growth process.

2.4. Characterization 
The grazing incidence wide-angle X-ray scattering 
(GIWAXS) patterns were collected by a CMOS 
flat panel X-ray detector (C9728DK) and a CCD 
detector (MAR165, 165 mm in diameter, 1024 by 
1024 pixels resolution). The layer spacings between 
crystallographic planes were calculated from (100)OOP 
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and (020)IP Bragg peaks position for the edge-on 
(with the alkyl chain perpendicular to substrate) 
P3HT single crystals [66]. The normal SAXS 
analyses were conducted on Bruker-AXS Nanostar 
SAXS with a counts rate of 1000 s/sec/channel and 
spatial resolution of 400-500 µm. Furthermore, the 
dimensions of P3HT single crystals were monitored 
with an AFM Nanoscope III.

3. Results and discussion
3.1. Fibrillar P3HT single crystals covered with 
PEG coils

FT-IR and 1HNMR spectra of synthesized 
P3HT7000-Br are represented in Figs. 1(a) and (b), 
respectively. In FT-IR spectrum (Fig. 1(a)), the end 
C–Br bands were detected at 620 and 1240 cm–1. 
The main chains peaked at 832, 1456, 1510 and 
3054 cm–1 and the side chains were characterized 
based on 728, 1378, 2856, 2926 and 2955 cm–1 

peaks. In 1HNMR spectrum (Fig. 1(b)), the head-
to-tail/head-to-tail (HT-HT) peak appeared at 6.98 
ppm. The molecular weight of P3HT block was 
determined using the intensities at 2.6 and 2.8 ppm.

Figs. 2(a-c) represent 1HNMR spectra of 
P3HT48800-Br, P3HT21000-Br, and P3HT7150-Br. The 
HT-HT configurations appeared at 6.98 ppm. The 
other configurations including tail-to-tail/head-to-
tail (TT-HT), head-to-head/head-to-tail (HH-HT), 
and tail-to-tail/head-to-head (TT-HH) appeared at 
7.00, 7.03, and 7.05 ppm, respectively.

1HNMR spectrum of P3HT21000-b-PEG750 block 
copolymers is represented in Fig. 3(a), in which 
all peaks are identified on the structure of diblock 
copolymer. In addition, Fig. 3(b) illustrates the 
size exclusion chromatography (SEC) elutograms 

Fig. 1- FT-IR (a) and 1HNMR (b) spectra of synthesized 
P3HT7000-Br.

Fig. 2- 1HNMR spectra of P3HT48800-Br (a), P3HT21000-Br (b), 
and P3HT7150-Br (c).
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Fig. 1. FT-IR (a) and 1HNMR (b) spectra of synthesized P3HT7000-Br.  
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Fig. 2. 1HNMR spectra of P3HT48800-Br (a), P3HT21000-Br (b), and P3HT7150-Br (c). 
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of P3HT7000-b-PEG750, P3HT21000-b-PEG750, and 
P3HT48800-b-PEG750 block copolymers. The PDI 
of synthesized P3HT-b-PEG block copolymers 
ranged in 1.23–1.26.

Fig. 4(a) reports the thermogravimetric analysis 
(TGA) curves of PEG750 (200–398 °C), P3HT21000 
(> 460 °C)-b-PEG750 (395–460 °C), and P3HT21000 
(> 470 °C) homo and block copolymers. The 
ultraviolet-visible (UV-Vis) spectra of P3HT48800-
b-PEG750 in tetrahydrofuran (THF) and anisole 
are also reported in Fig. 4(b). In a better solvent 
such as THF, only one main peak was detected at 
462 nm. Via using a poorer solvent like anisole, in 
addition to the red-shifted main peak of 504 nm, 
two shoulder peaks also appeared at 571 and 602 
nm. The two vibronic peaks were attributed to the 
absorption of strong interchain π-π interactions. 

The synthesized materials were utilized to develop 
the fibrillar conductive single crystals in different 
growth conditions.

By applying the self-seeding technique, a uniform 
and homogeneous population of conductive P3HT 
single crystals covered by the dielectric coily PEG 
brushes were developed. Figs. 5(a-c) depict AFM 
height image, phase image, and height profile of 
P3HT7150-b-PEG single crystals grown from toluene 
at Ts = 20 °C, Tc = 10 °C. The dimensions of these 
single crystals in a (thickness of single crystal or 
hexyl side chains or (100) direction), b (length of 
single crystal or π-π stacking or (020) direction), 
and c (width of single crystal or longitude of P3HT 
main backbones) axes were 103.29 nm, 39.81 µm, 
and 38.29 nm, respectively. The folding numbers 

Fig. 3- (a) 1HNMR spectra of synthesized P3HT21000-b-PEG750 
block copolymers; (b) SEC elutograms of P3HT7000-b-PEG750, 
P3HT21000-b-PEG750, and P3HT48800-b-PEG750 block 
copolymers.

Fig. 4- (a) TGA curves of PEG750 (200–398 °C), P3HT21000 (˃ 
460 °C)-b-PEG750 (395–460 °C), and P3HT21000 (˃ 470 °C); (b) 
UV-Vis spectra of P3HT48800-b-PEG750 in THF and anisole.
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Fig. 3. (a) 1HNMR spectra of synthesized P3HT21000-b-PEG750 block copolymers; (b) SEC 

elutograms of P3HT7000-b-PEG750, P3HT21000-b-PEG750, and P3HT48800-b-PEG750 block 

copolymers. 
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Fig. 4. (a) TGA curves of PEG750 (200–398 °C), P3HT21000 (˃ 460 °C)-b-PEG750 (395–460 °C), and 

P3HT21000 (˃ 470 °C); (b) UV-Vis spectra of P3HT48800-b-PEG750 in THF and anisole. 
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for homopolymer single crystals were obtained 
by dividing the P3HT extended length to width of 
single crystals, i.e., D(002) dimension detected from 
the width of AFM height profile in the edge-on 
oriented single crystals and from the height of AFM 
height profile in the flat-on oriented single crystals. 
The extended length for molecular weights of 7150, 
21000, and 48800 g/mol were 18, 53, and 122 nm, 

respectively [20]. Indeed, the PEG coily blocks 
were excluded from the P3HT crystalline structure 
during growth of single crystals and, consequently, 
they developed some brush-like or hairy regions. 
Figs. 6(a) and (b) compare AFM height images and 
height profiles of P3HT48800-b-PEG hairy single 
crystals and P3HT48800 non-hairy single crystals 
grown from anisole at Ts = 60 °C and Tc = 20 °C. In 

Fig. 5- AFM height image (a), phase image (b) and height profile (c) of P3HT7150-b-PEG single crystals grown from toluene at 
Ts = 20 °C, Tc = 10 °C.

Fig. 6- AFM height images and height profiles of P3HT48800-b-PEG hairy single crystal (white), a = 1313.27 nm, b = 148.10 µm, c = 
42.42 nm; and P3HT48800 non-hairy single crystal (yellow), a = 1289.22 nm, b = 143.60 µm, c = 58.50 nm grown from anisole at Ts 
= 60 °C, Tc = 20 °C.

 
   (a) (b) 

 
                                                                       (c) 

Fig. 5. AFM height image (a), phase image (b) and height profile (c) of P3HT7150-b-PEG single 

crystals grown from toluene at Ts = 20 °C, Tc = 10 °C. 
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the flat-on oriented hairy single crystals, the wavy 
AFM height profile (white curve in Figure 6(b)) 
demonstrated the accumulation of coily dielectric 
PEG end blocks on the surface of single crystals in 
c axis. However, AFM height profile of P3HT48800 
non-hairy single crystal was straight without any 
waves (yellow curve in Figure 6(b)). All data in this 

section are tabulated in Tables S1, S2, and S3.
AFM images accompanied by selected area 

electron diffraction (SAED) patterns in the inset 
panels for some P3HT based fibrillar single crystals 
are represented in Figs. 7(a-e). The dimensions of 
these single crystals in a (thickness of single crystal 
or hexyl side chains or (100) direction), b (length 

Fig. 7- AFM images of (a) P3HT7150 single crystals in toluene, Ts = 20 °C, Tc = 0 °C, a = 106.12 nm, b = 30.20 µm, c = 137.00 
nm; (b) P3HT21000-b-PEG single crystals in toluene, Ts = 20 °C, Tc = 0 °C, a = 101.29 nm, b = 32.15 µm, c = 104.81 nm; (c) 
P3HT48800 single crystals in toluene, Ts = 30 °C, Tc = 20 °C, a = 74.78 nm, b = 34.74 µm, c = 58.50 nm; (d) P3HT48800 single 
crystals in xylene, Ts = 40 °C, Tc = 30 °C, a = 437.50 nm, b = 64.55 µm, c = 116.87 nm; (e) P3HT7150-b-PEG single crystals in 
anisole, Ts = 50 °C, Tc = 40 °C, a = 1089.50 nm, b = 161.88 µm, c = 38.35 nm.

 
   (a)     (b)  

 
    (c) (d)  

 
(e) 

Fig. 7. AFM images of (a) P3HT7150 single crystals in toluene, Ts = 20 °C, Tc = 0 °C, a = 106.12 nm, b = 30.20 µm, c = 137.00 nm; 

(b) P3HT21000-b-PEG single crystals in toluene, Ts = 20 °C, Tc = 0 °C, a = 101.29 nm, b = 32.15 µm, c = 104.81 nm; (c) P3HT48800 

single crystals in toluene, Ts = 30 °C, Tc = 20 °C, a = 74.78 nm, b = 34.74 µm, c = 58.50 nm; (d) P3HT48800 single crystals in xylene, 

Ts = 40 °C, Tc = 30 °C, a = 437.50 nm, b = 64.55 µm, c = 116.87 nm; (e) P3HT7150-b-PEG single crystals in anisole, Ts = 50 °C, Tc 

= 40 °C, a = 1089.50 nm, b = 161.88 µm, c = 38.35 nm. 
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of single crystal or π-π stacking or (020) direction), 
and c (width of single crystal or longitude of 
P3HT main backbones) axes are also reported 
in the caption. In SAED pattern of the fibrillar 
P3HT single crystals having (020) prisms in π-π 
stacking direction and (002) in longitude of P3HT 
backbone, an edge-on orientation was recorded, 
in which the P3HT main backbones and the hexyl 
side chains were parallel with and perpendicular 
to the substrate, respectively. On the other hand, 
appearance of two pairs of (100) prisms in a axis 
or hexyl side chains direction and two pairs of 
(020) prisms in b axis or π-π stacking direction 
demonstrated a flat-on orientation for the P3HT 
chains, in which the main backbones and hexyl 
side chains were perpendicular to and parallel with 
the substrate, respectively. The schemes of Fig. 8 
represent the folded edge-on and laminated edge-

Fig. 8- Scheme of backbone folding in high molecular weight 
P3HTs in edge-on and flat-on oriented single crystals as well as 
backbone lamination in low molecular weight P3HTs in edge-on 
and flat-on oriented single crystals.

Fig. 9. TEM images accompanied by the corresponding SAED patterns in the inset for (a) P3HT7150 single crystals in toluene, Ts = 30 
°C, Tc = 0 °C, a = 130.00 nm, b = 41.00 µm, c = 136.85 nm; (b) P3HT21000 single crystals in toluene, Ts = 30 °C, Tc = 0 °C, a = 108.22 
nm, b = 37.00 µm, c = 201.55 nm; (c) P3HT48800-b-PEG single crystals in toluene, Ts = 30 °C, Tc = 10 °C, a = 83.00 nm, b = 36.87 µm, 
c = 23.04 nm; (d) P3HT48800-b-PEG single crystals in xylene, Ts = 30 °C, Tc = 20 °C, a = 385.59 nm, b = 57.94 µm, c = 32.83 nm; (e) 
P3HT48800-b-PEG single crystals in xylene, Ts = 40 °C, Tc = 30 °C, a = 445.76 nm, b = 67.53 µm, c = 42.46 nm; (f) P3HT7150 single 
crystals in anisole, Ts = 50 °C, Tc = 40 °C, a = 1045.02 nm, b = 130.84 µm, c = 821.75 nm.

 

 

Fig. 8. Scheme of backbone folding in high molecular weight P3HTs in edge-on and flat-on 

oriented single crystals as well as backbone lamination in low molecular weight P3HTs in edge-

on and flat-on oriented single crystals. 
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                                    (e)                                                                     (f) 
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on P3HT chains for the high molecular weight 
(48000 g/mol) and low molecular weight (21000 
and 7150 g/mol) P3HTs, respectively. Figs. 9(a-
f) also report TEM images accompanied by the 
corresponding SAED patterns in the inset for the 
P3HT based homopolymer and block copolymer 
single crystals developed in distinct processing 
conditions.

The 2D GIWAXS plots of P3HT48800-b-PEG 
single crystals grown from xylene at Ts = 30 °C, 
Tc = 10 °C and grown from anisole at Ts = 50 °C, 
Tc = 20 °C are represented in Figs. 10(a) and (b), 
respectively. The edge-on orientation was dominant 
in this work; because (100) growth planes (hexyl 
side chains direction) and (020) growth planes 
(π-π stacking direction) mainly appeared in out of 
plane (OOP or Qz) and in plane (IP or Qxy) axes, 
respectively. In the single crystals grown with an 
edge-on orientation, the hexyl side chains were 
perpendicular to substrate. Appearance of (200) 
and (300) spots in addition to (100) planes in Qz 
was indicative of a high ordering in the structures of 
developed fibrillar P3HT48800-b-PEG single crystals.

Based on AFM data and the extended length 
of P3HT backbones, the P3HT chains with lower 
molecular weights (7150 and 21000 g/mol) 
depicted backbone laminating states, however, 
those with Mn

P3HT of 48800 g/mol were folded in 
c direction. The effective factors on folding of 
P3HT48800 chains in the single crystal structures 
consisted of the quality of employed solvent and 
the crystallization temperature. Better solvents due 
to decelerating the growth condition led to a higher 
number of foldings. The folding numbers for 

P3HT48800-b-PEG single crystals grown at Ts = 30 °C 
and Tc = 20 °C from toluene and xylene were 4 and 
3, respectively. Furthermore, the folding number 
mainly decreased with an increase of Tc. The free 
energy increases parallel with the crystallization 
temperature elevation. To reach a lower free 
energy and, consequently, a stable state, the crystal 
tends to decrease its folding number. Because 
the extended chains possess the lowest energy 
and thus the most stable state. In conclusion, via 
Tc enhancement, the system would decrease the 
folding number to maintain its stability [53]. For 
P3HT48800-b-PEG single crystals grown from 
toluene, the folding numbers at Tc = 0 and 10 °C 
were 5, and via Tc elevation to 20 °C, this value 
decreased to 4. Moreover, for P3HT48800-b-PEG 
single crystals grown from anisole at Ts = 60 °C, the 
folding numbers at the crystallization temperatures 
of 20, 30, and 40 °C were 1, 1, and 0, respectively. 
In P3HT7150-b-PEG and P3HT21000-b-PEG single 
crystals, due to the presence of end coily PEG 
blocks, only two backbone lamination was allowed 
in c direction. 

Towards an optimum seeding temperature, 
the remained seeds were larger but in a lower 
population. Hence, in secondary growth step, 
larger seeds resulted in bigger single crystals. 
This trend was detected for toluene, xylene, and 
anisole. In toluene, the dimension of single crystals 
in a direction (thickness or D(100)OOP) at Tc = 10 °C 
for P3HT7150-b-PEG single crystals at Ts = 20 °C 
was 103.29 nm and at Ts = 30 °C was 130.17 nm, 
respectively. In xylene, the thickness of single 
crystals at Tc = 20 °C for P3HT21000-b-PEG single 

Fig. 10. 2D GIWAXS plots of P3HT48800-b-PEG single crystals grown from xylene at Ts = 30 °C, Tc = 10 °C (a) as  well as grown from 
anisole at Ts = 50 °C, Tc = 20 °C (b).

Fig. 9. TEM images accompanied by the corresponding SAED patterns in the inset for (a) P3HT7150 single crystals in toluene, Ts = 

30 °C, Tc = 0 °C, a = 130.00 nm, b = 41.00 µm, c = 136.85 nm; (b) P3HT21000 single crystals in toluene, Ts = 30 °C, Tc = 0 °C, a = 

108.22 nm, b = 37.00 µm, c = 201.55 nm; (c) P3HT48800-b-PEG single crystals in toluene, Ts = 30 °C, Tc = 10 °C, a = 83.00 nm, b 

= 36.87 µm, c = 23.04 nm; (d) P3HT48800-b-PEG single crystals in xylene, Ts = 30 °C, Tc = 20 °C, a = 385.59 nm, b = 57.94 µm, c 

= 32.83 nm; (e) P3HT48800-b-PEG single crystals in xylene, Ts = 40 °C, Tc = 30 °C, a = 445.76 nm, b = 67.53 µm, c = 42.46 nm; (f) 

P3HT7150 single crystals in anisole, Ts = 50 °C, Tc = 40 °C, a = 1045.02 nm, b = 130.84 µm, c = 821.75 nm. 

 

 

 

 
 

   (a) (b)  

Fig. 10. 2D GIWAXS plots of P3HT48800-b-PEG single crystals grown from xylene at Ts = 30 °C, 

Tc = 10 °C (a) as  well as grown from anisole at Ts = 50 °C, Tc = 20 °C (b). 
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crystals at Ts = 30 °C was 437.01 nm and at Ts 
= 40 °C was 555.17 nm, respectively. In anisole, 
the thickness of single crystals at Tc = 40 °C for 
P3HT48800-b-PEG single crystals at Ts = 50 °C was 
1001.13 nm and at Ts = 60 °C was 1172.16 nm, 
respectively. 

As a fact, the growth of single crystal 
encountered a higher hindrance in a direction 
by increasing the molecular weight of P3HT 
backbones. In xylene at Ts = 40 °C and Tc = 10 °C, 
D(100)OOP for P3HT7150-b-PEG single crystals was 
638.10 nm, for P3HT21000-b-PEG single crystals 
was 606.43 nm, and for P3HT48800-b-PEG single 
crystals was 555.28 nm. This trend was also 
detected in two other solvents, i.e., toluene and 
anisole. In our growth systems, poorer solvents led 

to thicker single crystals. At Ts = 30 °C and Tc = 20 °C, 
the thickness of P3HT48800-b-PEG single crystals in 
toluene was 77.03 nm and in xylene was and 385.59 
nm. By increasing the crystallization temperature, 
D(100)OOP values decreased; because a higher Tc 
provided a lower driving force for stacking the 
P3HT chains in an or hexyl chains direction. In 
toluene, D(100)OOP at Ts = 30 °C for P3HT21000-b-PEG 
single crystals at Tc = 0 °C was 115.08 nm and at 
Tc = 20 °C was 98.00 nm. Moreover, in xylene at 
Ts = 40 °C, D(100)OOP for P3HT48800-b-PEG single 
crystals grown at Tc = 10 °C was 555.28 nm, and 
grown at Tc = 30 °C was 445.76 nm, respectively. 
All data in this section are tabulated in Tables S1, 
S2, and S3.

Similar to the effect of solvent quality on the 

Fig. 11. 1HNMR spectra of PEG5000-b-PANI3100 (a) and PANI8700-b-PEG6000-b-PANI8700 (b); SEC elutograms of PEG5000-b-
PANI13600, PANI8700-b-PEG6000-b-PANI8700, and PANI10000-b-PEG35000-b-PANI10000 block copolymers (c).
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thickness or hexyl side chains stacking, poorer 
solvents also resulted in further stacking in π-π 
stacking. At Ts = 30 °C and Tc = 20 °C, the length 
of fibrillar P3HT48800-b-PEG single crystals or D(020)

IP value in toluene was 36.78 µm and in xylene was 
57.94 µm. Besides, at Ts = 30 °C and Tc = 10 °C, the 
length of fibrillar P3HT7150-b-PEG single crystals 
in toluene was 49.75 µm and in xylene was 80.38 
µm. At higher seeding temperatures, larger seeds 
remained, thereby grown single crystals were longer 
in π-π stacking direction. Quantitatively, D(020)IP 
values for P3HT21000-b-PEG single crystals grown 
from toluene at seeding temperatures of 20 and 30 
°C were 32.15 and 41.10 µm (at Tc = 0 °C), grown 
from xylene at seeding temperatures of 30 and 40 
°C were 67.98 and 81.79 µm (at Tc = 20 °C), and 
grown from anisole at seeding temperatures of 50 
and 60 °C were 143.77 and 162.92 µm (at Tc = 40 °C), 
respectively. Furthermore, the hindrance against 
the attachment of longer P3HT backbones to the 
P3HT crystalline structures was larger, thereby 
higher molecular weights of P3HT chains led to 
shorter fibrillar single crystals. This molecular 
weight effect on the length of grown single crystals 
was detected for toluene, xylene, and anisole at all 
processing temperatures. The D(020)IP in toluene at 

Ts = 20 °C and Tc = 0 °C for P3HT7150-b-PEG single 
crystals was 39.96 µm, for P3HT21000-b-PEG single 
crystals was 32.15 µm, and for P3HT48800-b-PEG 
single crystals was 26.20 µm. Likewise, in xylene 
at Ts = 40 °C and Tc = 30 °C, D(020)IP for P3HT7150-
b-PEG single crystals was 94.75 µm, for P3HT21000-
b-PEG single crystals was 81.56 µm, and finally 
for P3HT48800-b-PEG single crystals was 67.53 µm. 
Furthermore, in anisole at Ts = 60 °C and Tc = 30 
°C, D(020)IP for P3HT7150-b-PEG single crystals was 
180.71 µm, for P3HT21000-b-PEG single crystals was 
163.00 µm, and finally for P3HT48800-b-PEG single 
crystals was 147.75 µm.

In upcoming section, the role of PEG blocks was 
altered from coily brushes to crystalline substrates 
using PEG5000-b-PANI, PANI-b-PEG6000-b-PANI, 
and PANI-b-PEG35000-b-PANI block copolymers 
instead of P3HT-b-PEG ones. Via changing the 
crystalline building blocks from P3HT to PEG, 
the rectangular crystals were developed instead of 
fibrillar ones.

3.2. Square PEG single crystals sandwiched 
between PANI nanorods

1HNMR spectra of PEG5000-b-PANI3100 and 
PANI8700-b-PEG6000-b-PANI8700 block copolymers 

Fig. 12- STEM image of PEG5000-b-PANI3100 single crystals grown from amyl acetate at Tc = 23 °C (a); AFM height image (b) and 
height profile (c) of PEG5000-b-PANI13600 single crystals grown from amyl acetate at Tc = 28 °C.
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are represented in Figs. 11(a) and (b), respectively. 
The molecular weights of block copolymers were 
calculated based on the integral ratios of protons 
of PANI benzene ring (7.2–7.4 ppm) and CH2 
protons of PEG (3.5 ppm). Moreover, Fig. 11(c) 
demonstrates the SEC traces of PEG5000-b-PANI13600, 
PANI8700-b-PEG6000-b-PANI8700, and PANI10000-b-
PEG35000-b-PANI10000 block copolymers. The PDI of 
synthesized PEG-b-PANI block copolymers ranged 
in 1.62–1.68.

The self-seeding technique was also employed to 
develop PEG single crystals covered by the PANI 
nanorods. In these types of single crystals, the 
dielectric coily PEG chains assembled as the folded 
crystalline substrates, and the PANI rigid blocks 
excluded from the crystalline structures arranged 
as the rod nano-brushes on PEG substrates. 
In PANI-b-PEG35000-b-PANI single crystals via 
elevation of Tc, the thickness of substrate increased 
and, consequently, the folding number decreased. 
So, the required surface area of lower diameters 
was provided. The approximate folding number 
for the lamellar PEG substrate was determined 
based on extended length of PEG chains and 
crystalline substrate thickness acquired from SAXS 
measurements [58]. In PANI-b-PEG6000-b-PANI 
and PEG5000-b-PANI single crystals, the thickness 
of substrate did not vary by increase of PANI 
molecular weight. This was due to the extended 
conformation of PANI brushes on the PEG5000 and 

PEG6000 substrates. Through lengthening the PANI 
nanofibers, their exerted osmotic pressure onto 
substrate surface did not change. Fig. 12(a) illustrates 
the scanning transmission electron microscopy 
(STEM) image of PEG5000-b-PANI3100 single 
crystals grown from amyl acetate at Tc = 23 °C. The 
oxidant used to prepare PEG5000-b-PANI3100 block 
copolymers was PHD. It could be inferred that all 
single crystals were uniform from the perspective 
of lateral size and shape. AFM height image and 
height profile of PEG5000-b-PANI13600 single crystals 
grown from amyl acetate at Tc = 28 °C are also 
depicted in Figs. 12(b) and (c), respectively. The 
oxidant used to prepare PEG5000-b-PANI13600 block 
copolymers was PHD. In these single crystals, the 
thickness of crystalline PEG substrate, the height 
of stretched PANI nanorods, and their average 
diameter were 2.81, 121, and 6 nm, respectively.

With increasing the molecular weight of PANI 
nanorods, the height of PANI nano-brushes 
increased on PEG single crystals. This trend stood 
for all samples at whole temperature ranges. By 
increasing the PANI repeating units from 34 to 95 
and to 154 with the oxidant of APS, the thicknesses 
of PANI nanorods were 28, 83, and 127 nm, 
respectively. At the same crystallization temperature 
with PHD oxidant and repeating units of 38, 98, 
and 158, the heights of PANI nanorods were 33, 80, 
and 133 nm, respectively. Neither PEG5000-b-PANI 
nor PANI-b-PEG6000-b-PANI single crystals having 

Fig. 13. 1D SAXS graphs of PANI10000-b-PEG35000-b-PANI10000 and PANI8700-b-PEG6000-b-PANI8700 single crystals grown from 
amyl acetate at Tc = 23 °C.

 

 

 

 

 

 

 

Fig. 13. 1D SAXS graphs of PANI10000-b-PEG35000-b-PANI10000 and PANI8700-b-PEG6000-b-
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various PANI molecular weights grew above 28 °C. 
Because above 28 °C due to enhancement of PEG 
substrate thickness and, consequently, foldings 
decrease, the demanded surface area of PANI 
nanorods with a minimum diameter of 6 nm for 
PEG5000 systems and 6–7 nm for PEG6000 ones were 
not provided anymore by PEG substrate. All data in 
this section are tabulated in Tables S4, S5, and S6.

In PEG5000-b-PANI and PANI-b-PEG6000-b-
PANI single crystals, the interface distribution 
function (IDF) of SAXS graphs depicted only 
two different peaks. The first and second peaks 
stood for the PEG crystalline substrate thickness 
and the height of grafted PANI nanorods on the 
substrate surface. In IDF of SAXS for PANI-b-
PEG35000-b-PANI single crystals, the first peak 
was for the thickness of crystalline substrate, and 
second and third peaks indicated the thickness of 
PANI nanorods in the non-stretched and stretched 
phase regions, respectively. The 1D SAXS graphs of 
PANI10000-b-PEG35000-b-PANI10000 (3.80, 38.00, and 
86.01 nm) and PANI8700-b-PEG6000-b-PANI8700 (3.24 
and 81.00 nm) single crystals grown from amyl 
acetate at Tc = 23 °C are represented in Fig. 13. The 
oxidant used to prepare PANI10000-b-PEG35000-b-
PANI10000 and PANI8700-b-PEG6000-b-PANI8700 block 
copolymers was APS.

4. Conclusions
The conductive P3HT single crystals covered 

by the dielectric coily PEG oligomers were grown 
from toluene, xylene, and anisole. Longer P3HT 
backbones resulted in folding, whereas shorter ones 
were laminated on each other. The solvent quality 
and crystallization temperature affected the chain 
folding in the fibrillar P3HT single crystals. Thanks 
to a lower crystallization rate in good solvents, 
a large number of foldings were detected in the 
longitude of main backbones. The poorer solvents 
increased the dimensions of grown crystals in both 
hexyl side chains and π-π stacking directions. The 
crystallization temperature had an inverse impact 
on the folding number in order to resume the 
system stability. In the second empirical part, to 
change the role of PEG blocks from random coily 
brushes to the single crystalline substrates, PANI-
b-PEG-b-PANI rod-coil block copolymers were 
applied and the conductive PANI nanorods were 
developed on PEG lamellar single crystals. The 
molecular weights of PANI and PEG blocks as well 
as crystallization temperature were investigated as 
effective parameters on the system characteristics.
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