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Abstract 
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the 
geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern 
recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and 
evaluated the capability of two unsupervised methods Fuzzy c-means (FCM) and Gustafson Kessel (GK) and one 
supervised method Adaptive Neuro-Fuzzy Inference Systems (ANFIS) at revealing the presence of a channel system. 
The process is performed in an interactive scheme in the SeisART software to obtain the best output. The seismic facies 
analysis was conducted on a 3D seismic data set acquired at North Sea block F3. Based on the results, the GK method 
outperformed the other two methods in delineating the channel pattern. 
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Introduction 
Seismic facies analysis can provide useful 
information about the geological properties and 
their variations (Thenin & Larson, 2013; Figueiredo 
et al., 2014). Seismic facies maps are obtained by 
analyzing multi-seismic attributes with different 
pattern recognition algorithms. Several algorithms 
have been applied to the classification of seismic 
facies with various degrees of success (Saggaf et 
al., 2003; Hashemi, 2010; Roy et al., 2013; Zhao et 
al., 2015). 

Generally, a seismic facies analysis includes 
three main steps: i) selecting an appropriate number 
of attributes; ii) defining the proper number of 
clusters, and iii) employing an appropriate pattern 
recognition method (Zhao et al., 2015). Barnes and 
Laughlin (2002) showed that the proper and optimal 
choice of seismic attributes has a greater effect on 
the accuracy of the seismic facies result in 
comparison to the choice of pattern recognition 
algorithm. If relevant, physically meaningful, and 
independent seismic attributes are not chosen, the 
produced seismic facies map will lack significant 
geological meaning (Dorrington & Link, 2004; 
Chopra and Marfurt, 2005; Barnes, 2007). For 
selecting the correct number of attributes, several 
methods such as cross-plot and correlation were 

proposed (White, 1991; Barnes, 2007). The selected 
attributes can be used as inputs for the seismic 
facies analysis or used to generate new attributes by 
Principal Component Analysis (PCA) or Kernel 
Principal Component Analysis (KPCA) (Roweis & 
Saul, 2000).  

Concerning a proper method to select the number 
of clusters, numerous methods have been presented. 
De Matos et al., (2006) used Davis Bouldin index, 
while Marroquin (2014) used a semi-automatic 
method involving the interpreter to choose the 
optimum number of clusters. 
For the pattern recognition step, there are several 
supervised and unsupervised methods with their 
own advantages and disadvantages. For supervised 
methods, geological knowledge based on well data 
is used to train the method into obtaining the more 
accurate result where you have a sufficient number 
of well information (West et al., 2002; Yenugu et 
al., 2010; Guillen et al., 2015). On the other hand, 
unsupervised methods can be used when well data 
are not available. Additionally, these type of 
methods are data-driven and look for similarity and 
regularity in the seismic data to generate seismic 
facies analysis (Barnes et al., 2002; Zhao et al., 
2013). In this approach, there are some methods for 
evaluating cluster result, based on statistical 
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theories, indicating the nearest output to a 
reasonable geological model (Barnes et al., 2002; 
Coléou et al., 2003; de Matos et al., 2006, Hadiloo 
& Shahedani, 2016).  

Seismic data, due to their inherent nature, are 
always associated with a degree of uncertainty and 
imprecision (Nikravesh & Aminzadeh, 2001). 
Therefore, the result of seismic facies analysis 
suffers from some degree of imprecision. To tackle 
this problem more efforts have been done by using 
different methods of pattern recognition algorithm 
(Aminzadeh & Chatterjee 1984; Tamhane et al., 
2002; Marfurt et al., 2014; Marroquín, 2014; Zhao 
et al., 2015).   

One of the known methods in handling the 
uncertainty problem is fuzzy logic (Gupta et al., 1979: 
Nikravesh & Aminzadeh, 2001; Castillo et al., 2011). 
In this paper, we use an interactive procedure that 
includes different methods for selecting the 
appropriate number of seismic attributes, choosing the 
desired number of clusters, and creating a facies map 
to reveal the presence of a channel system within the 
MSF4 formation with the SeisART software (Hadiloo 
et al., 2017). The 3D seismic data set used was 
acquired at North Sea block F3 and made available by 
dGB Earth Sciences B.V. and TNO companies (Song 
et al., 2017).   
 
Methodology 
The procedure of seismic facies analysis according 
to the workflow is shown in figure 1 is presented in 
the following sections. 
 
Selecting the appropriate attributes 
As mentioned in the workflow, the first step of the 
analysis is importing seismic data to the process. 
After that, it is required to select appropriate 
attributes according to the seismic facies analysis 
goal (Barnes, 2007). Therefore, it is decided to use 
Instantaneous amplitude, instantaneous frequency, 
instantaneous phase, instantaneous cosine phase, 
similarity, texture, and energy attributes. Many 
seismic attributes are unstable, unreliable, and 
obscure with purely mathematical quantities. Also, 
some others duplicate each other. Therefore, using 
all of them is not necessary. There are several 
methods to select the appropriate attributes for the 
analysis. The inspection process is done with the 

cross plots of attributes. Those attributes that have 
less correlation with each other can be chosen to be 
used in seismic facies analysis. Through this 
method, it is concluded that the Instantaneous 
amplitude, instantaneous frequency, instantaneous 
phase, texture attributes are the most appropriate for 
this analysis (Figure 2a). 
   Another way to reduce redundant attributes is 
data mining techniques such as principal component 
analysis (PCA) and nonlinear kernel principal 
component analysis (KPCA) (Roweis & Saul, 
2000). These methods are statistical procedures that 
use an orthogonal transformation to convert the set 
of correlated attributes into a set of values 
of linearly (PCA) or nonlinear (KPCA) 
uncorrelated variables. This transformation is 
defined in such a way that the first principal 
component has the largest possible, and each 
succeeding component, in turn, has the highest 
variance possible under the constraint that 
is orthogonal to the preceding components. KPCA 
is considered to be a good technique to work with 
image data (Kuralkhanov 2010). Here KPCA for 
feature reduction analysis is used. Figure 2a shows 
cross plots of two instantaneous amplitudes and 
instantaneous cosine phase attributes. Also, Figure 
2b shows cross plots of two attributes created by 
KPCA. As seen in this Figure, KPCA attributes 
show less correlation. 
 
Optimum number of clusters 
To obtain the appropriate number of clusters for 
unsupervised methods, it is needed to cluster the 
whole samples of horizon MSF4 of seismic 
attributes set with various cluster numbers and then 
use evaluation indices to determine the best number 
of clusters. In this study, six evaluation indices 
were used partition coefficient (PC), partition index 
(SC), separation index (S), Xie and Beni’s index 
(XB), Dunn’s index (DI), and Alternative Dunn 
index (ADI) (Dunn 1973; Balasko et al., 2005; 
Wang & Zheng, 2007).  
   The number of clusters, obtained by all the 
indices, which is most repeated, is the most 
probable number of clusters related to a considered 
sample of data. Table 1 shows the results of 
different evaluation indices and their selected 
cluster number.  

 
Table 1. Optimum cluster number by different evaluation factors indexes 

Methods of attribute selection PC SC S XB DI ADI 

Selected seismic attributes set by cross plot method 9 7 8 4 5 4 
Three attributes created by first three  components of KPCA analysis 8 5 5 8 7 5 
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Figure 1.The workflow of seismic facies analysis 

 

 
Figure 2. a) Shows cross plots of two Instantaneous amplitude and instantaneous cosine phase attributes; b) cross plots of two attributes 
created by KPCA. 
 
   As shown in the table, the number of four clusters 
is the best number for clustering the considered 
sample of horizon based on seismic attributes 
selected by cross plot method. KPCA analysis 
presents five clusters. 

   Considering the supervised clustering, the number 
of clusters is determined based on the analysis of 
petrological information of well data which here 
this number is four.  
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Clustering  
We used Fuzzy c-means (FCM) (Dunn, 1973), 
Gustafson and Kesel (GK) (Gustafson & Kessel, 
1979) fuzzy clustering methods as unsupervised 
clustering techniques (Bezdek, 1980; Ghosh et al., 
2011) Adaptive Neuro-Fuzzy Inference System 
(ANFIS) as a supervised technique. Here we 
present a briefed theory of these methods.  
 
 
FCM 
Fuzzy c-means (FCM) is a method of clustering. 
This method allows one member of data to belong 
to two or more clusters. This method (Dunn 1973; 
Bezdek 2013) is based on minimization of the 
following objective function: 
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where m is any real number greater than 1, uij is the 
degree of membership of xi in the cluster j, xi is 
the ith of d-dimensional measured data (here d is 
the number of selected attributes in sample base 
clustering and is the number of seismic samples in 
the selected horizon in trace shape clustering), cj is 
the d-dimension center of the cluster, and ||*|| is any 
norm expressing the similarity between any 
measured data and the center. Fuzzy partitioning is 
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membership uij and the cluster centers cj by: 
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This iteration will stop when, where   is a 

termination criterion between 0 and 1, whereas k is 
the iteration steps. This procedure converges to a 
local minimum or a saddle point of Jm.  

 
Gustafson-Kessel clustering algorithm  
The Gustafson-Kessel algorithm associates each 
group with a point and a matrix, respectively, that 
represent the center of the group and its covariance 
(Gustafson & Kessel 1979). While the original 
fuzzy c-means make the hypothesis that the clusters 
are spherical, the GK algorithm is not subject to this 
restriction and can identify ellipsoidal clusters. 

Denote irf the influence of point i on the group r, 

the center of the group and the covariance matrix 
are calculated as 
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where p is the feature-space dimension, f is the 
membership function, m is a user-defined parameter 
called fuzzifier. The center of the cluster is 
calculated as a weighted average of all data, the 
weights depend on the algorithm considered, as 
detailed in the following. The covariance matrix is 
defined as a fuzzy equivalent of classic covariance. 
Through eq. (4), a size restriction is imposed on the 
covariance matrix whose determinant must be 1. As 
a consequence, the GK algorithm is able to identify 
ellipsoidal groupings that are approximately the 
same size. This update stage of the cluster 
parameter is alternated with the updating of the 
weighting coefficients until a convergence criterion 
is met (Lesot & Kruse 2008).  
 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 
ANFIS can serve as a basis for constructing a set of 
fuzzy if-then rules with appropriate membership 
functions to generate the stipulated input-output 
pairs with combining the topology of the neural 
network and fuzzy logic (Jang, 1993; Abraham, 
2005). ANFIS uses the characteristics of both 
methods and also eliminates some disadvantages of 
their lonely-used case. The operation of ANFIS 
looks like feed-forward backpropagation network. 
Consequent parameters are calculated forward 
while premise parameters are calculated backward. 
In the fuzzy section, only zero or first-order Sugeno 
inference system or Tsukamoto inference system 
can be used (Tsukamoto, 1979; Takagi & Sugeno, 
1985). ANFIS algorithm is composed of two 
membership tuning steps: coarse tuning and fine 
tuning. A lot of methods are proposed for these two 
tuning procedures (Kim et al., 1997; Chen, 1999). 
In this paper, we used fuzzy c-means (FCM) 
clustering for extracting and coarse tuning of the 
rules that model the data behavior. For fine-tuning, 
which adjusts the premise and consequent 
parameters more precisely, we used a hybrid 
method which combines the gradient method and 



Comparison Between Unsupervised and Supervised Fuzzy Clustering Method…              31 

the least squares estimate (LSE) to identify 
parameters. Fine tuning procedures are repeated to 
find the appropriate parameters. Finally, output 
variables are obtained by applying fuzzy rules to 
fuzzy sets of input variables. For example:  
Rule 1: If x is A1 and y is B1 then f1 = p1x + q1y + r1 
Rule 2: If x is A1 and y is B2 then f2 = p2x + q2y + r2 

Since ANFIS combines both neural network and 
fuzzy logic, it is capable of handling complex and 
nonlinear problems. Even if the targets are not 
given, ANFIS may reach the optimum result 
rapidly. The architecture of ANFIS consists of five 
layers and the number of neurons in each layer 
equals to the number of rules. In addition, there is 
no vagueness in ANFIS as opposed to neural 
networks (Jang et al., 1997; Kumar & Garg, 2004). 
 
Implementation 
The procedure of facies analysis explained above, 
has been implemented on a 3D seismic data set 
acquired at block F3 of the North Sea (Figure 3) 
where F3 is a block in the Dutch sector of the North 
Sea. The block is covered by 3D seismic in the 
Upper-Jurassic – Lower Cretaceous strata. The 
upper 1200ms of the data set consists of reflectors 
belonging to the Miocene, Pliocene, and 
Pleistocene. The large-scale sigmoidal bedding is 
readily apparent and consists of the deposits of a 
large fluviodeltaic system that drained large parts of 
the Baltic Sea region (Sørensen et al, 1997; 
Overeem et al., 2001).  

 

 
Figure 2. Seismic amplitudes on MSF4 formation. 

 
The deltaic package consists of sand and shale, 

with an overall high porosity (20–33%). Some 
carbonate-cemented streaks are present. A number 

of interesting features can be observed in this 
package. The most striking feature is the large-scale 
sigmoidal bedding, with text-book quality downlap, 
toplap, onlap, and truncation structures. Several 
seismic facies can be distinguished: transparent, 
chaotic, linear, shingles. Well logs show the 
transparent facies to consist of a rather uniform 
lithology, which can be either sand or shale. The 
chaotic facies likely represent slumped deposits. 
The shingles at the base of the clinoforms have 
been shown to consist of sandy turbidites (dGB 
Earth Sciences B.V., 2013). We used this data to 
evaluate the capability of unsupervised and 
supervised pattern recognition methods at 
identifying a channel system. The log data of four 
wells, located at the seismic data acquisition region 
(Figure 3), are employed for facies analysis. 

In unsupervised approach, two Fuzzy clustering 
methods (FCM and GK) were used and the results 
are shown in the figures 4 (for FCM) and 5 (for 
GK). 

As seen in the results of FCM, the clustering 
algorithm applied on seismic attributes has been 
able to provide better results in delineating channel 
pattern than on KPCA attributes. Figure 5 shows 
results of GK clustering method and as seen they 
outperform those of FCM clustering method. 
Afterward, similar to FCM results, it can be seen 
that the result of the application of GK clustering 
method on seismic attributes is better than that of 
the GK clustering on KPCA attributes. 

In supervised approach, ANFIS method with four 
clusters reported by petrological information of the 
existing four wells. Seismic attributes in the 
selected sample point in the near of wells are used 
to train fuzzy inference system. Figure 6 shows the 
results of ANFIS clustering method. The locations 
of the wells are remarked on the maps. As seen in 
the figure, ANFIS supervised method is not able to 
delineate the channel pattern, although as well as 
unsupervised methods (figures, 4 and 5), the result 
of clustering applied on seismic attributes (Figure 
6a) has been better rather than the result of the 
application of clustering method on KPCA 
attributes (Figure 6b). The reason for the weak 
performance of ANFIS method can be due to the 
lack of wells in the location of channels. 

Comparing the results of all methods could give 
more knowledge about seismic facies in the selected 
horizon. All these results help the interpreter to 
choose appropriate input variables, seismic 
attributes and analyzing a method to obtain a subtle 
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pattern. In this proposed method, there is the ability 
to obtain seismic facies in the consecutive samples 
to follow seismic facies in thickness of horizon. 
This approach could reveal the shape of seismic 
facies analysis in a different depth. For example, in 
most cases, fault structure is available in all 

thicknesses and samples of one horizon but for the 
channel, this feature exists in some consecutive 
samples depending on the thickness of the channels, 
and by analyzing these samples the interpreter is 
able to distinguish between different features. 

 

 
Figure 3.seismic facies analysis result obtained by FCM clustering method applied on a) seismic attributes set and b) KPCA attributes. 

 
Figure 4. seismic facies analysis result obtained by GK clustering method applied on a) seismic attributes set and b) KPCA attributes. 

 
Figure 5. Seismic facies analysis result obtained by ANFIS clustering method applied on a) seismic attributes set and b) KPCA 
attributes. The well locations are remarked on figures. 
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Conclusion 
In this study, seismic facies analysis was 
implemented using unsupervised fuzzy clustering 
methods of FCM and GK, and supervised ANFIS 
clustering method. It was shown that GK method 
can be able to provide a better result in delineating 
channel pattern than FCM method, it can be due to 
GK clustering formula that uses ellipsoidal clusters 
so that the channel pattern, as a longitudinal event, 
is a favorite target for ellipsoidal clusters. This 
result is obtained with the interaction of the 
interpreter to choose appropriate input and 
parameter to create seismic facies analysis with 
high accuracy. Considering the ANFIS method, it is 

concluded that when there are not any well data at 
the location of channel pattern, supervised ANFIS 
method cannot provide an acceptable result. 
Another point of the results is that the attributes 
created by KPCA method can deteriorate output of 
clustering methods when the target is channel 
pattern visualization. 
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