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Abstract 
Nowadays, viable and cost-effective methods play a vital role in hydrocarbon exploration up to the 
point that geoscientists cannot rule out the importance of the passive seismic method (PSM) in oil 
exploration operations. This method is based on seismic energy, which has a natural source. This 
study focuses on seismic energy anomaly of 1-6 Hz. Some researches show that spectral and 
polarization analysis in low-frequency of seismic noises can be used in determining the location of 
hydrocarbon reservoir. In this paper, these methods were used in Maroun oil field. Using  
the seismic data recorded by five seismometers, Vertical-to-Horizontal spectral ratio (V/H), Power 
Spectral Density (PSD) and polarization analysis were studied in the mentioned area. Based on  
the results, these microtremors can be used as a hydrocarbon indicator. In this study, transient  
and artificial noises are removed from raw data with various techniques. Afterward, the vertical-to-
horizontal spectral ratio method was used and the results were analyzed and compared. 
Subsequently, the PSD method was investigated and its results were compared with each other  
at different stations. Following this, polarization analysis was considered that was normally 
followed by parameters such as strength, dip, rectilinearity and azimuth in particular. Results 
showed that MAR5 Station was placed over an area with hydrocarbon potential and there are 
medium to low hydrocarbon potentials at other stations. There is also a positive correlation 
between passive seismic analysis and the result of seismic reflection surveys carried out in the 
earlier studies.  
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1. Introduction 
Dangel et al. (2003) first reported spectral 
ratio to explore hydrocarbon reservoir 
anomaly. Such anomalies in the range 
frequency of 1-6 Hz for proportional vertical 
spectrum are compared to that of surrounding 
areas. Passive seismic techniques are relatively 

new, and a consensus on terminology among 
interested groups worldwide has not been 
reached (Asten, 2006). 
The major sources of ambient noise lower 
than 1 Hz called microseism that are due to 
large-scale meteorological events and 
oceanic waves. Ambient noises higher than 1 
Hz are generated from urban areas, vehicle 
traffic, railways, machinery, natural sources 
and noises generated by wind in remote 
locations (high-frequency noise). Ambient 
noise from such sources propagates 
principally as surface waves (Gerivani et al., 
2012; Marzorati and Bindi, 2006; Peterson, 
1993; Webb, 2007; Wilson et al., 2002; 
Young et al., 1996). Furthermore, ambient 
noise with special characteristics has also 

been observed over the hydrocarbon 
reservoirs (Saenger et al., 2007a). 
 A growing number of techniques, ranging 
from spectral to polarization indicators, have 
been developed to analyze hydrocarbon 
microtremor signals to provide information 
about the presence of hydrocarbon reservoir 
(Dangel et al., 2003; Holzner et al., 2005). 
The peak of the vertical component spectrum 
in the range frequency of 1-6 Hz was studied 
by Walker (2008). Seismic waves passing 
through the hydrocarbon reservoir are 
recorded with a low frequency of 1-6 Hz. 
The distribution of anomaly over the 
hydrocarbon reservoir and under the stations 
can be obtained by investigating the 
amplitude spectrum of vertical-to-horizontal 
spectral ratio, using the recorded waveforms 
of seismometer over the reservoir, its 
surroundings and their comparison to each 
other. 
In diverse oil and gas fields throughout the 
world, passive seismic studies report positive 
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correlation between low frequency spectral 
anomaly and spatial location of hydrocarbon 
reservoir (Dangel et al., 2003; Holzner et al., 
2005; Lambert et al., 2009; Saenger et al., 
2007c).  
In this study, the spectral analysis was used 
to interpret spatial variation associated with a 
hydrocarbon reservoir prospect. As far as 
polarization is concerned, the analysis of 
particle motion as a function of time is 
described as the polarization analysis 
(Jurkevics, 1988). This indicator plays a vital 
role in the identification of hydrocarbon 
potential, that is also used in this study. 
 

2. Geology and Seismicity 
Khuzestan plain over Maroun oil field is 
located in the south-western part of Zagros 
fold-thrust belt. The Zagros folded belt lies 
on the northern margin of under-thrusting 
Arabian continental crust, above a 
Precambrian metamorphic basement 
(Berberian, 1986).  
The sedimentary rocks of Zagros are mainly 
shelf type. Sediments from Zagros mountain 
range have been deposited on the subsiding 
basement of the Arabian continental margin 
from late Precambrian to Miocene time.  
The sedimentary section, relatively thick 
(about one km) Infra-Cambrian evaporates 
facie and salt deposit of the Hormoz series 
from Miocene section, for the most part is 
continuous. Numerous plastic layers of 
evaporate and salt deposits are also present in 
the Mesozoic sedimentary section (Jackson 
and McKenzie, 1984). 
The total thickness of sedimentary cover 
varies between nearly 5 to 10 km (Berberian, 
1995). The moderate to large magnitude  
 

earthquakes in meizoseismal area are 
localized and concentrated along particular 
structural geomorphologic features that 
contain some major hydrocarbon fields, 
especially Maroun oil field, throughout the 
world. The sedimentary column of the area 
comprises of a ~ 12 km thick section of lower 
Cambrian through Pliocene strata without 
significant angular unconformities.  
Believed to be involved in the fold-thrust 
belt, the oldest sedimentary unit is the late 
Proterozoic to early Cambrian. The Hormoz 
salt is overlain by 6-10 km of platformal 
deposits including shale, dolomite and 
predominantly sandstone, in the Cambrian 
through Triassic section and limestone in the 
Jurassic Lower Miocene section (Jackson, 
1980; Jackson and Fitch, 1981).  
Regarding Maroun as a part of Khuzestan 
plain, Zagros folded belt has a strong effect 
on the seismicity of this zone. Due to a 
highly plastic layer named Hormoz salt 
formation, this area is one of the most 
seismically-active belts in Asia (Berberian, 
1981, 1995). 
 
3. Measurements 
Data acquisition in Maroun oil field  
was done by five temporary Seismic Network 
stations in December 2005. The local 
Seismic Network in Maroun consists of  
four short-period GBV (MAR1-4 stations) 
and one Broad-Band GURALP seismometer 
(MAR5 station). The continuous time-series 
data recorded by all five stations was  
visually inspected. The locations of these  
five stations are shown in Table 1 and 
Figure1. 

 
Table 1. Location of field stations and their subsoil conditions. 

 

Station Village Name Latitude Longitude Elevation Soil Conditions 

MAR1 Sudan 31º05.2´ 49º16.5´ 33.0 
Alluvium and Neighbored 

by Aghajari Formation 

MAR2 
Mosharafeh-e 

Kuchak 
31º08.7´ 49º13.6´ 51.6 

Alluvium and Neighbored 
by Aghajari Formation 

MAR3 Beit-e Savadi 31º11.8´ 49º18.1´ 77.0 Alluvium 

MAR4 Alvan Moslem 31º07.1´ 49º22.8´ 106.9 Alluvium 

MAR5 Owdeh 31º16.7´ 49º07.9´ 53.2 Alluvium 
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5. Spectral Analysis 
5.1. Vertical-to-Horizontal Spectral ratio  
In passive seismic, using Rayleigh-wave 
energy, several classes of array processing 
have been reported in the literature over 
roughly the past 50 years. The simplest 
processing method is the single station 
analysis of three-component data to give 
spectra for the ratio of vertical to horizontal 
particle motion (Asten, 2006). 
Bard (1999) reviewed the method in detail, 
and it is now widely used for qualitative or 
semi quantitative mapping of sediment 
thickness over bedrock, particularly in 
earthquake hazard zonation studies (Asten, 
2006; Bard, 1999; Lachetl and Bard, 1994; 
Lermo and Chávez-García, 1994). According 
to Lambert et al. (2009), Vertical-to-
Horizontal Spectral ratio (V/H) is considered 
as an indicator to locate and correlate with 
the reservoir. This indicator of hydrocarbon 
potential in seismic waves can be extracted 
with the analysis of the spectral ratio between 
vertical records and horizontal ones. V/H 
spectral ratio in the range frequency of 1-6 
Hz is related to the presence of hydrocarbons 
and in the locations above the reservoir, as it 
exceeds one. It is shown in the following 
equations:  

 
 

V

H

XV

H X





                                             (5) 

2

2 2

V 2UP

H EW NS



                                       (6) 

Three possible mechanisms that generate 
direct hydrocarbon indicator (DHI) in the 
background spectrum are standing wave 
resonance, selective attenuation and resonant 
amplification (Saenger et al., 2007d). The 
purpose of resonant amplification is that the 
fluid pressure of reservoirs is increased due 
to the overburden pressure of rocks over 
reservoirs. In addition, the size of pores and 
porosity in reservoir rock decreases with 
increased overburden pressure. The selective 
attenuation properties are due to the fact that 
shear waves cannot propagate through the 
hydrocarbon, as it is in a state of fluid. The 

reason is that shear waves do not propagate 
through the fluid ( 0  ). Nevertheless, 

body waves propagate through the medium 
with lower attenuation. That is to say, its 
primary property is the higher attenuation of 
shear waves compared with body waves in 
the fluid mediums. Therefore, propagation  
of shear waves in such mediums with 
horizontal components significantly 
decreases their energy. The impedance 
contrast between the hydrocarbon and non-
fluid medium causes standing wave 
resonance, which in turn results in reflection 
(Saenger et al., 2007d). 
Regarding the spectral ratio attribute, a 
trough rather than a peak in the 
Horizontal/Vertical (H/V) ratio can be found 
within the range frequency of 1-6 Hz that 
Dangel et al. (2003) considered for the 
spectral anomaly related to the  hydrocarbon. 
Therefore, one would develop an attribute 
using V/H ratio in contrast to the well-known 
Horizontal-to-Vertical Spectral ratio (H/V) 
method used by others to identify soil layers 
with passive seismic data set (Ibs-von Seht 
and Wohlenberg, 1999; Maresca et al., 2003; 
Parolai et al., 2004). 
In the V/H method, Fourier transform is 
applied for processed data. Low-frequency 
passive seismic analysis for locating 
hydrocarbon reservoir potential is too reliant 
on the field and survey conditions. It cannot 
provide accurate information if the field 
contains noise sources such as industrial and 
man-made activity because of interference 
with the hydrocarbon microtremor signal. 
Thus, further analysis must be performed to 
avoid misinterpretation. In Figure 3, three 
results of different methods including V/H 
Maximum obtained from V/H analysis 
between 1-6 Hz (Figure 4), seismic section, 
and geological section are shown together. In 
each station, maximum V/H is shown. In 
Figures 3.b and 3.c, seismic and geological 
sections are shown. As can be seen, the best 
location of the presence of hydrocarbon 
potential relates to MAR5 station. In Figure 
3.b and Fig. 3.c, the circles indicate the 
trapped oil. 
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Figure 3. 
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6. Polarization Analysis 
As far as any time interval of three-
component data are concerned, xu , yu and zu

containing N time samples auto- and cross-
variances can be obtained by:  

   
N

ij i j
S 1

1
C u s u s

N 

    
                        (14) 

where i and j are the component index x, y, z 
and s is the index variable for a time sample 
(Jurkevics, 1988; Saenger et al., 2007c). The 
3◊3 covariance matrix  

XX XY XZ

XY YY YZ

XZ YZ ZZ

C C C

C C C C

C C C

 
   
 
 

                        (15) 

is real and symmetric and presents a 
polarization ellipsoid with best fit to the data. 
The principal axis of this ellipsoid can be 
obtained by solving C for its eigenvalues 1 ,

27 and 37 eigenvectors 1p , 2p  , 3p : 

(c I)P 0                                              (16) 

where I is the identity matrix. The parameter 
called rectilinearity L, sometimes also called 
linearity, relates the magnitudes of the 
intermediate and smallest eigenvalue to the 
largest eigenvalue: 

2 3

1

L 1
2

   
    

                                   (17) 

and measures the degree of how linear the 
incoming wave field is polarized. It 
fluctuates between zero and one. The other 
two polarization parameters describe the 
orientation of the largest eigenvector 

1 1 1 1p (p (x), p (y), p (z))  in dip and azimuth. 
 The dip can be calculated by: 

 
   

11

2

1 1

p z
tan

p x p y


 
  
  

                (18) 

which is zero for horizontal polarization and 
defined positive in positive z-direction. The 
azimuth is specified as: 

 
 

11

1

p y
tan

p x
  

    
 

                                   (19) 

The results of polarization analysis for all 
five stations are shown in  Figure 7. 
In Figure 7, the output resulting from 
analysis of polarization, V/H spectral ratio 
and three-dimensional modelling come 
together in order to compare the results of 
passive seismic noise with each other. 
Such figure can help seismologists 
understand the geologic structure and are  
a major tool in the exploration and 
production of oil and gas (Snieder and 
Wapenaar, 2010). 
Wide distribution of particle velocity azimuth 
using polarization analysis shows that we can 
trust the results in MAR2, MAR3 and MAR5 
stations because the noise is not directional in 
these stations.  
In Figure 7, the fault along the reservoir  
is located between MAR1 and MAR2 
stations and the reservoir structure. 
According to Figure 7, the mentioned 
stations are outside the position of the 
reservoir, which are hundred meters from the 
southern edge. 
Whenever both man-made and artificial 
noises were removed, four parameters (dip, 
strength, rectilinearity, and azimuth) of 
particle motion can be calculated.  
According to Saenger et al. (2007a),  
these parameters have been considered  
to determine whether or not the area have  
hydrocarbon. For each station, these 
parameters were calculated and the results 
are shown in Figures 8-12 and Table 2. 
Saenger et al. (2007b) reported that for a 
measure point with low hydrocarbon 
potential, dip must be stable, low value (

20  ) and the strength is relatively low with 
some spikes. Rectilinearity is lower 
compared to the values observed above a 
hydrocarbon reservoir. Azimuth is relatively 
stable, which could point to an artificial noise 
source. 
Furthermore, in the stations located above 
hydrocarbon, there are some findings:  
Dip is stable high value ( 80  ) and  
this value is directly above the reservoir. 
Strength is varying. rectilinearity is relatively 
high and stable and somehow correlated  
with the strength. Azimuth is strongly 
varying, as expected for such high dip  
values. 
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Table 2. Comparison of polarization attributes for all stations in Maroun oil field. 

STATION MAR1 MAR2 MAR3 MAR4 MAR5 
FIGURE 8 9 10 11 12 

DIP 0 67  68 35 80 

AZIMUTH 
Relatively 

Stable 
Unstable between 

-200 and 200 

Unstable 
between -200 

and 200 
Stable about 45 

Unstable 
between -200 

and 200 

LARGEST 
EIGENVALUE 
(STRENGTH) 

low Relatively low Relatively low 
Relatively low 

with some 
spikes 

Varying, but 
relatively high 

during 
measurement 

period 

RECTILINEARITY 
The 

measurement 
is below 0.5 

Relatively high 
The 

measurement is 
over 0.5 

Fluctuating 
between 0.2 and 

0.3 
Relatively high 

 
Table 2 shows four polarization parameters 
including dip, azimuth, strength and 
rectilinearity. With regard to the 
aforementioned, polarization characteristics 
were analyzed in order to find the presence or 
absence of hydrocarbon, the results of which 
are as follows: In MAR5 station, all of the 
polarization parameters show the presence of 
hydrocarbon. MAR4 station results do not 
show the presence of hydrocarbon because 
they do not have any indicator of 
hydrocarbon potential. In MAR2 and MAR3 
stations, some indicators show the presence 
of hydrocarbon such as azimuth, while other 
indicators such as dip show the absence of 
hydrocarbon. It seems that there is paradox in 
the interpretation of polarization results that 
is due to the adjacency to MAR 5 station. 
In order to remove the high noises in the data 
of MAR4 station, windowing is used up to 
the point that the desired data are usable. 
Table 3 shows the probability of hydrocarbon 
potential based on the type of indicator 
(number one is high probability of 
hydrocarbon reservoir and number zero 
represents very low probability of 
hydrocarbon reservoir). The possibility of 
hydrocarbon potential is shown in four 
categories ranging from Very low to High. 
 
7. Conclusions 
It is clear that the analysis of polarization in 

this paper has very strong correlation with 
the result of three-dimensional seismic 
experiment. As to last geophysics works, in 
particular seismic reflection survey, the 
earlier results about Maroun oil field and 
Spectral methods adapt to the polarization 
results in this passive seismic experiment.  
In this paper, polarization analysis, has 
successfully revealed the results. In this 
study, MAR5 station is located over 
hydrocarbon reservoir. As a result, MAR2 
and MAR3 stations are situated nearby 
hydrocarbon reservoir. Besides, MAR1 and 
MAR4 stations are deprived of hydrocarbon 
anomaly. This research shows that in Maroun 
region V/H spectral ratio and PSD indicate 
reservoir location. 
Regarding Table 3, the best location for 
hydrocarbon reservoir is related to MAR5 
station having a complete certainty of  
hydrocarbon potential with the use of 
different geophysical methods.  
As to seismic section in  Figure 3, the result 
reports that the medium probability in MAR 
2 and MAR 3 stations in comparison with 
MAR5 station. Consequently, MAR 2 and 
MAR 3 stations are less likely to have 
hydrocarbon potential. In MAR1 and MAR4 
stations, all performed geophysical methods 
reject the presence of hydrocarbon potential 
because there is a clear directivity in our 
data.  

 
Table 3. The Possibility of hydrocarbon potential with various geophysical  methods. 
Station V/H PSD Polarization Possibility 
MAR1 0 0 0 Very low 
MAR2 1 1 0 Medium 
MAR3 1 1 0 Medium 
MAR4 0 0 0 Very low 
MAR5 1 1 1 High 
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