![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,579 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,680,830 |
تعداد دریافت فایل اصل مقاله | 98,911,238 |
تخمین عمق به روش جدید اویلر RDAS و مقایسۀ آن با نتایج مدلسازی؛ مطالعۀ موردی: دادههای گرانی معدن هماتیت | ||
فیزیک زمین و فضا | ||
مقاله 1، دوره 44، شماره 1، اردیبهشت 1397، صفحه 1-20 اصل مقاله (1.01 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2017.223069.1006872 | ||
نویسندگان | ||
مصطفی موسی پور یاسوری1؛ وحید ابراهیم زاده اردستانی* 2 | ||
1دانشجوی کارشناسی ارشد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران | ||
2استاد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران | ||
چکیده | ||
تخمین عمق ساختارهای زمینشناسی یکی از مهمترین اهداف مطالعات ژئوفیزیکی است. واهمامیخت اویلر (اویلر استاندارد) یکی از روشهای معروف و پرکاربرد در تخمین عمق است. بر پایۀ اویلر استاندارد روشهای متنوعی برای کاهش خطای تخمین عمق معرفی شده است. در این پژوهش از روش جدیدی به نام اویلر RDAS استفاده شده است. این روش با استفاده از اویلر استاندارد به دست میآید و بر پایۀ گرادیان اول قائم و مشتقات سیگنال تحلیلی استوار است. بررسی دادههای گرانی مصنوعی نشان میدهد که اویلر RDAS، در تخمین عمق این دادهها، خطای کمتری از اویلر استاندارد دارد. همچنین از این دو روش برای تخمین عمق دادههای گرانی ناشی از تودۀ هماتیت، واقع در استان کرمان، استفاده شده است. جوابهای اویلر RDAS در مقایسه با اویلر استاندارد انطباق بیشتری با مرز آنومالیها دارد و همچنین برای هر آنومالی، جوابها در بازۀ قائم کوچکتری قرار دارند که میتواند ملاکی برای دقیقتر بودن جوابهای اویلر RDAS باشد. برای بررسی بیشتر با استفاده از وارونسازی به روش کاماچو دادههای گرانی معدن هماتیت مدلسازی شده است. افزون بر این، نتایج مدلسازی با نتایج تخمین عمق اویلر مقایسه شده است. در این مقایسه 10 نقطه برروی آنومالیها مشخص شده و عمق دقیق آنومالیها برای این نقاط نشان داده شده است. خطای میانگین مجذور مربعات بین جوابهای اویلر و مدلسازی محاسبه شده است. این خطا، بین اویلر RDAS و مدلسازی، کمترین مقدار است که نشان میدهد جوابهای اویلر RDAS به جوابهای مدلسازی نزدیک است. بنابراین میتوان گفت جوابهای اویلر RDAS و مدلسازی از اویلر استاندارد دقیقتر است. | ||
کلیدواژهها | ||
اویلر استاندارد؛ تخمین عمق؛ دادههای گرانی؛ سیگنال تحلیلی؛ ضریب ساختاری؛ واهمامیخت اویلر | ||
مراجع | ||
Barbosa, V. C., Silva, J. B. and Medeiros, W. E., 1999, Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics, 64(1), pp.48-60. Beiki, M., 2010, Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75(6), pp. I59-I74. Beiki, M., 2013, TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Åsele area, Sweden. Journal of Applied Geophysics, 90, pp. 82-91. Cooper, G. R. J., 2014, Euler deconvolution in a radial coordinate system. Geophysical Prospecting, 62(5), pp. 1169-1179. Cooper, G. R., 2015, Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data. Geophysics, 80(1), pp. J1-J6. Camacho, A. G., Montesinos, F. G. and Vieira, R., 2002, A 3-D gravity inversion tool based on exploration of model possibilities. Computers & Geosciences, 28(2), pp. 191-204. Guo, C. C., Xiong, S. Q., Xue, D. J., and Wang, L. F., 2014, Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal. Applied Geophysics, 11(3), 331-339. Gerkens, A., 1989. Foundation of exploration geophysics. Hsu, S. K., 2002, Imaging magnetic sources using Euler's equation. Geophysical prospecting, 50(1), pp. 15-25. Huang, D., Gubbins, D., Clark, R. A. and Whaler, K. A., 1995, May. Combined study of Euler's homogeneity equation for gravity and magnetic field. In 57th EAGE Conference and Exhibition. Keating, P. B., 1998, Weighted Euler deconvolution of gravity data. Geophysics, 63(5), pp. 1595-1603. Keating, P. and Pilkington, M., 2004, Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophysical prospecting, 52(3), pp. 165-182. Klingele, E. E., Marson, I. and Kahle, H. G., 1991, Automatic Interpretation of Gravity Gradiometric Data in Two Dimensions: Vertical GRADIENT1. Geophysical Prospecting, 39(3), pp. 407-434. Marson, I. and Klingele, E. E., 1993, Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58(11), pp.1588-1595. Ma, G., 2014, The application of extended Euler deconvolution method in the interpretation of potential field data. Journal of Applied Geophysics, 107, 188-194. Nabighian, M. N., 1972, The analytic signal of twodimensional magnetic bodies with polygonal crosssection:Its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507–517. Reid, A. B., Allsop, J. M. and Granser, H., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1), 80–91. Roest, W. R., Verhoef, J. and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57,116–125. Salem, A., Elawadi, E., and Ushijima, K., 2003, Depth determination from residual gravity anomaly data using a simple formula. Computers & geosciences, 29(6), 801-804. Salem, A., Williams, S., Fairhead, J. D., Ravat, D., and Smith, R., 2007a, Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26(12), 1502-1505. Salem, A., Smith, R., Williams, S., Ravat, D. and Fairhead, D., 2007b, Generalized magnetic tilt-Euler deconvolution. In 2007 SEG Annual Meeting. Society of Exploration Geophysicists. Salem, A., Williams, S., Fairhead, D., Smith, R., and Ravat, D., 2008, Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73(1), L1-L10. Thompson, D. T., 1982, EULDPH—a new technique for making computer assisted depth estimates from magnetic data: Geophysics, 47(1), 31–37. Zhang, F. X., Zhang, X. Z., Zhang, F. Q., Sun, J. P., Qiu, D. M. and Xue, J., 2010, Study on geology and geophysics on structural units of Hulin Basin in Heilongjiang province: Journal of Jilin University (Earth Science Edition), 40(5), 1170–1176. | ||
آمار تعداد مشاهده مقاله: 1,732 تعداد دریافت فایل اصل مقاله: 945 |