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1. Introduction 

Interaction between moving objects and flexible structures, 

according to its importance, have attracted an extensive interest in 

the fields of mechanical and civil engineering. The significance of 

the topic increasingly enhanced with technology improvement and 

finding new applications for different structures, e.g. bridges, 

multistory parking lots, high speed precision machineries, hard 

disk memories, wood saws, ceiling mounted cranes, and almost 

every structure with moving parts. Due to the fact, several 

researchers have studied various aspects of this issue. A 

comprehensive study on several simple moving load problems and 

their analytical solutions has been provided by Fryba [1].  

Ahmadian et al. [2] have studied the dynamic behavior of 

Timoshenko and Euler-Bernoulli simply supported beams 

carrying non uniform distributed moving mass using the mode 

summation method. Andi et al. [3] developed a closed form 

solution for uniformly distributed moving masses on rectangular 

plate with general boundary conditioned. Eftekhari et al. [4] have 

studied vibration of rectangular plates under accelerated moving 

mass via mixed application of the Ritz method, the Differential 

Quadrature method, and the Integral Quadrature method. 

Hassanabadi et al. [5] have investigated transverse vibration of a 

thin rectangular plate excited by a moving oscillator along an 

arbitrary trajectory using the Eigen function expansion method. 

Vibration analysis of a rectangular plate subjected to a moving 

distributed load, considering the effects of inertia force, Coriolis 

force and centrifugal force has been performed by Wu [6]. 

Cifuentes and Lalapet [7] have used an adaptive mesh to study the 

vibration of a rectangular thin plate carrying an orbiting load 
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utilizing finite element method. Dynamic response of the 

rectangular plate undergoing of a traveling point mass with 

combined finite element which allows for the presence of inertial 

effects of moving mass is provided by Esen [8]. Shahdnam et al. 

[9] presented a numerical-analytical method which is simply 

applicable in all boundary conditions for analysis of transverse 

vibration of nonlinear thin plates. Rofooei et al. studied the 

vibration of a simply supported plate carrying traveling mass, 

adopting a number of uniformly distributed piezoelectric patches 

and presented the circular and rectilinear trajectories of the 

traveling load in detail [10].  An adaptive mesh based on finite 

element method, as well as the perturbation method, is used for 

analysis of vibration of mindlin plates undergoing traversing loads 

by [11]. Takabatake [12] has provided a simplified analytical 

method for evaluating the transverse vibration of a rectangular 

plate with traveling load and stepped thickness. Gbadeyan and Oni 

[13] have obtained some analytical results to study vibration 

behavior of plate subjected moving load which is based on the 

modified generalized finite integral transform, the expression of 

the Dirac delta function as a Fourier Cosine series, and the use of 

the modified Struble’s asymptotic method. Sofi [14] has 

investigated the nonlinear in-plane dynamics of inclined cables 

subjected to a moving oscillators with varying velocity. A semi-

analytical method has been employed to solve nonlinear 

rectangular plate equation traveled by a moving load as well as an 

equivalent concentrated force with variable velocity by Mamandi 

et al. [15]. Significant and considerable books for analytical and 

numerical solution and analysis of dynamic response of structures 

subjected to moving load can be found in references [16-42]. 
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Most of the reviewed articles deal with the linear dynamic 

behaviors of structures under moving load whereas in reality such 

systems naturally have nonlinear behavior. Especially when the 

plate exposed large deflection without exceed the stress failure 

criteria, the nonlinear parts in the strain-displacement relations 

cannot be ignored. In thick plate which its thickness is 

considerable with other dimensions cannot be neglected the 

deformation caused by shear. In this article, the dynamic response 

of thick rectangular plate that a concentrated mass travels with 

constant angular velocity in circular trajectory is obtained by 

considering the geometrically nonlinear effects. The nonlinear 

governing coupled equations of motion of elements are solved 

with the finite element method as an effective numerical method 

for the vibration analysis and suitable for all variants of classical 

boundary conditions. The approach utilizes first order shear 

deformation plate theory (FSDT). Inertia force, Coriolis force and 

centrifugal force considered in this study. The effects of plate 

aspect ratio, moving-mass speed and mass ratio on the nonlinear 

dynamic response of thick plate carrying moving mass are 

investigated and compared the results with related linear problem 

2. Problem Formulation 

A uniform undamped (FSDT) rectangular plate with length 
xL

, width yL ,thickness h , density  , mass per unit area  , modulus 

of elasticity E  , Poisson’s ratio    and flexural rigidity

  3 212 1D Eh   under the action of concentrated moving 

load traveling along an arbitrary trajectory with variable velocity, 

as shown as figure 1, is considered at first. Then the time-

dependent function of a circular path on a square plate determined. 

The most important assumption of FSDT plate is that there is a 

linear variation of displacement across the plate thickness but that 

the plate thickness does not change during deformation. In this 

study assumes that the moving mass is always in contact with the 

plate surface under it. The plate assumes thick with large 

deflection according to first shear deformation theory. 

 

 
Figure. 1: A mass moving along arbitrary trajectory on the surface of 

rectangular plate. 

Based on first shear deformation theory of plate, the displacement 

field can be expressed in the form [16]: 

     0, , , ,xu x y z u x y z x y    

     0, , , ,yv x y z v x y z x y   (1) 

   0, , ,w x y z w x y   

where  , ,u v w are the time dependent displacement in the x, y and 

z-axes, and x and y are the rotations of a transverse normal about 

the y and x-axes, respectively. According to the von-Karman 

nonlinear associated with the displacement field (Eq. 1), the strain 

components are defined as [16]: 
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 are the von Karman 

nonlinear strain, which denote the stretching of a point on the plane 

0z   Under the above assumptions and neglecting damping, the 

equation of motion of nonlinear isotropic plates with assuming 

FSDT model are given by [16]: 
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(3) 

Here ijN , ijM , jQ , 
0I and 

2I  are in-plane force resultants, 

moment resultants and transverse force resultants, principal 

inertias and rotatory inertias, respectively [16]. xP , yP and zP  are 

the in-plane force components of the contact point that caused by 

gravity and the vibration acceleration of the plate. 
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  (4) 

Where pm  and g  are the moving mass and gravitational 

acceleration, respectively and  x  is the Dirac delta-function in 

x-direction. 

In above equations  2 2d dt  can be determined from the 

second-order total differential of plate deflection function [1]. 
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(5) 

In the above equations 
0x  ,

0y  and 
0xV  , 0 yV  are initial positions 

and velocities of the moving mass at 0t  . 
xa  and ya  are the 

acceleration vector components of moving mass in x and y 

directions, respectively. The path of the moving mass is defined 

by the parametric coordinates     ,p px t y t . As shown in figure 

2, assumed that the origin of the Cartesian coordinate system of 

the rectangular plate is at left and down edge of plate 

 0, 0x y   with the upward z-axis direction.  px t  and  py t

are the global positions that can be described by the following 

equations: 
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Where r  and   are the circular path radius and the angular 

frequency of the orbiting mass, respectively (Figure. 2). 

 

Figure. 2: The circular path of orbiting mass with radius of r and angular 
velocity ω 

3. Finite element modeling 

The weak form of the FSDT can be derived using Galerkin 

method. The variables  0 0 0, , , ,x yu v w    can be approximated 

with differing degrees of Lagrange interpolation functions 
i  as: 
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Where  1 2, , , ,j j j j jU V W    are nodal values of  0 0 0, , , ,x yu v w  
respectively. The shape function of a nine-node rectangular 

element, as shown in figure 3, are: 
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In which 2 / 1s x a   and 2 / 1t y b   where a  and b  are the 

length and width of each rectangular plate element, respectively. 

 

Figure. 3: Local coordinates and number of each node of the nine-node 
element 

As shown in figure 3, the rectangular plate element is a 45-DOF 

plate element, therefore each node of this element is a five-degree 

of freedom: 

  , 1,2...9
T

i x y i
d U V W i     (9) 

The equivalent nodal forces at each node of the nine-node element 

can be determined by: 

 
2 2

1 1

, , 1,2...9
y x

i i
y x

P p x y dx dy i     (10) 

Hence p  can be obtained by substituting Eq. (5) into Eq. (4) for 

each direction yield: 
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Writing the resulting equation by substituting Eq. (11) and (7) 

into Eq. (3) in the form of a matrix equation is shown as following 

form: 
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(13) 

Where 1,2...9i   and  m ,  c and  k  are respectively the 

inertia force, Coriolis force and centripetal force which is 

presented respectively the mass, damping and stiffness matrices of 

moving mass element and can be expressed as: 

0 0

2 2

2

2

2

2

2

2 2

2

ij p i j

j j

ij p x i p y i

j j

ij p px i p px py i

j j j

p py i p px i p py i

m m

c m V m V
x y

k m V m V V
x yx

m V m V m V
x yy

 
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  (14) 

As the orbiting mass moves along the plate, the mass, damping and 

stiffness matrices are changed at every time step. Finite element 

model of damped structural system under the action of moving 

mass is as follows in matrices form: 

                 M d t C d t K d t F t     (15) 

In which  M ,  C and  K  are the overall mass, damping and 

stiffness matrices of structure, respectively.   d t ,   d t and 

  d t  are, respectively, the acceleration, velocity and deflection 

vectors. (𝑡) is the overall external force vector of the system. Based 

on FSDT, the components of plate mass, damping and stiffness 

matrices can be found in [16]. For considering the effect of 

orbiting mass, on the eth plate element at time t  , the overall mass 

and stiffness matrices of the entire system can be calculated by 

adding the inertia and centripetal forces caused by moving mass 

element. Hence the matrices of the entire structure for all elements 

except for the eth element, can be written as follows: 

   

   

M m

K k




  (16) 

And for the eth element we will have: 

   

   

e

e

M m m

K k k

    

    

  (17) 
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When the orbiting mass is on eth element, the mass and stiffness 

matrices caused by moving mass is added to overall property 

matrices of eth plate element [8]. By assembling the equations of 

various elements with considering the effects of moving mass, the 

finite element model of the total system is found. The fully 

discretized form of the total system is obtained using Newmark 

method. In this paper Newton-Raphson iteration method is used to 

determine deflections of central-point of plate in each step. 

4. Verification of numerical solution 

To verify the present method, we consider some special cases 

in existing literature that can be compared with our results. 

According to Newmark direct integration method, we used 

0.25   and 0.5   to calculate the solution of equation and 

verification cases. These values for   and   are unconditionally 

stable for this numerical process [20]. 

As the first example to validate the present formulation with 

elimination of the nonlinear term, a simple supported beam-plate 

under influence of a 4.4NF   moving force. This moving force 

travels along the centerline that is parallel to x-axes of plate with 

constant velocity 10m/sv  . The following values are utilized for 

the plate dimensions and material properties in literature: 

10.36cmxL  , 0.635cmyL  , 0.635cmh  , 206.8GPaE   and 
310686.9kg/m  . The existing results are compared with our 

results in table 1. In this table, fT  is the fundamental period and 

dynamic amplification factor (DAF) is the ratio of the maximum 

dynamic deflection to the maximum static deflection at the 

midpoint. The maximum deflection at the midpoint of the plate 

happens when the traveling time which the required time for the 

plate traveled by moving force ( T ) is near the fundamental period 

( fT ). Table 1 shows that our results are in a very good agreement 

with those found by an analytical solution for CPT plate [22] and 

also computed by FEM method for FSDT [43]. 

Table 1: Dynamic amplitude factor (DAF) versus velocity 

fT

T
  v   

This 

research 

Ref. 

[25] 

Ref. 

[24] 

Ref. 

[19] 

0.125 15.6 1.0623 1.042 1.063 1.025 

0.25 31.2 1.1302 1.082 1.151 1.121 

0.5 62.4 1.275 1.266 1.281 1.258 

0.75 93.6 1.5882 ----- 1.586 1.572 

1 124.8 1.7053 1.662 1.704 1.701 

1.25 156 1.7272 ----- 1.727 1.719 

2 250 1.5248 1.518 1.542 1.548 

5. Results and discussion 

This section elaborates the effects of large deformation and also 

variations of different geometrical parameters on the vibrations of 

the square plate under the action of orbiting mass. It is assumed 

that the load rotates on the circle of radius r centered at the center 

of the FSDT plate with a constant angular velocity   (see figure 

2). The boundary conditions of the plate are simply supported on 

each edge. Different properties of plate in all cases are considered 

as follows: 2mxL  , 2myL  , 200GPaE  , 29.81m/sg   and 

0.3  . The convergence study against the different finite 

element mesh for the nonlinear static analysis of the system under 

different values of uniform distributed load has been performed in 

Table 2. This table shows the center deflections of the plate that 

compared with those found by Reddy [16]. The convergence study 

for the nonlinear dynamic response of plate under an orbiting mass 

for different numbers of mesh elements are shown in Fig. 4. It can 

be seen that a finite element mesh is adequate to reach the 

acceptable results. We found that a time step size of 35 10t T    

is appropriately accurate approximation to achieve good 

convergence ( 2T   ). 

Figure 5 shows the vertical displacement of the central point of 

the system in one-cycle motion of orbiting mass ( 2p x ym L L ) 

with simply supported edges for aspect ratios of 

40,20,10,5xL h  . The  trajectory is a circle with radius 

0.4mr  and the angular velocity  is 150rad s  . As seen, the 

dynamic deflection of mid-plane based on nonlinear FSDT is 

higher than that obtained by linear FSDT in most of the duration 

for all aspect ratios. Dynamic response of the square plate under 

the orbiting mass modeled by both linear and nonlinear plates are 

similar for high thicknesses, but by decreasing the plate thickness, 

the plate deflection differs from each other even more. Therefore, 

by decreasing the thickness of the plate, it is more important to use 

nonlinear theories for plates. Also, it can be seen that the nonlinear 

deflections have more oscillations than the linear one. By reducing 

the thickness of the plate, the number of oscillations in both linear 

and nonlinear models decrease. 

Figure 6 and 7 show the vertical displacements of the midpoint 

as a function of dimensionless time in one rotation for different 

angular velocities ( 60,90,130,200 rad/s  ) and mass ratios 

  0.5,1,2,3p x ym L L   to study the importance of mass 

weight and angular. These figures show that the maximum 

deflection of the nonlinear solution have almost smaller values 

rather than the linear solution. 

 

 

 

 

Table 2: Nonlinear deflections of simply supported square plate under uniformly distributed static load  

q (lb/in2) 5×5a 7×7 9×9 11×11 13×13 Reddy, [21] 

6.25 0.2794(3)b 0.2809(3) 0.2816(3) 0.282(3) 0.2821(3) 0.278 

12.5 0.4609(4) 0.4625(4) 0.4632(4) 0.4635(4) 0.4637(4) 0.4619 

25 0.685(5) 0.6863(5) 0.6868(5) 0.687(5) 0.6872(5) 0.6902 

50 0.9479(6) 0.9482(6) 0.9485(6) 0.9486(6) 0.9487(6) 0.957 

75 1.1218(7) 1.1218(7) 1.1219(7) 1.122(7) 1.1221(7) 1.133 

100 1.2562(8) 1.2559(8) 1.2559(8) 1.256(8) 1.256(8) 1.2686 
a The number of elements along x and y-direction, respectively. 
 b The number of iterations. 
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Figure 4: Midpoint deflection of plate for different number of mesh 

elements. 

 

As can be seen in figure 6, for mass ratios 0.5,2,3   the 

maximum deflection of the linear solution occurs at 90rad/s  . 
For mass ratio of 1   the maximum deflection of the linear plate 

occurs at 130rad/s  . But from figure 7, it is noticed that for 

mass ratios of 0.5,1,2   the maximum vertical displacements of 

the nonlinear solution happens at 200rad/s  . 

For mass ratio 3   the maximum deflection happens at 

90rad/s  . Figure 6 and 7 shows that the significant of nonlinear 

analysis of the plate under heavy load. From figure 6 and 7, it can 

be found that the maximum vertical displacements of linear or 

nonlinear plate models, for an angular velocity which is reliable 

for a mass ratio will not necessarily be reliable for another mass 

ratio. 

Another important parameter which influences the dynamic 

responses of plate under moving mass 2p x ym L L  is the radius 

of orbiting trajectory, as shown in figure 8. 

 

(a) (b) 

  

(c) (d) 

  

Figure 5: Dynamic vertical displacement of the central point of simply supported plate for linear and nonlinear solution versus time under the action of orbiting 

mass of 2  , at a rotation velocity of 150rad/s   and 0.4mr  with different aspect ratios; a) 40xL

h
 , b) 20xL

h
 , c) 10xL

h
 and d) 5xL

h
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In figure 8, The thickness of plate is considered to be 0.05m  

and the mass orbits on a circular path with 130rad/s    In this 

figure linear and nonlinear FSDT models are compared at different 

radiuses 0.15,0.35,0.6 and 0.9mr  . As the radius increase, the 

effect of geometrical nonlinearity increases noticeably and the 

number of oscillations of both linear and nonlinear plate increases. 

As seen in this figure, the maximum vertical dynamic 

displacement of the plate central point based on linear theory for 

all cases occurs at the radiuses of 0.9mr  , which is very close 

to the edge of the plate, but the maximum deflection of mid-plate 

based on nonlinear for all cases in this figure occurs at the radiuses 

of 0.15mr  , which is close to central point of plate. Therefore, 

this figure illustrates that the effect of mid-plane stretching should 

be considerable assumption in this analysis. 

 

 

(a) (b) 

  

(c) (d) 

  

Figure 6: The effect of different angular velocity of center vertical displacement of simply supported plate with 40xL

h
  and 0.7mr   at mass ratios for 

linear solution; a) 0.5  , b) 1  , c) 2r    and d) 3  . 
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(c) (d) 

  

Figure 7: The effect of different angular velocity of center vertical displacement of simply supported plate with 40xL

h
  and 0.7mr   at mass ratios for 

nonlinear solution; a) 0.5  , b) 1  , c) 2r    and d) 3  . 
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Figure 8: Dynamic response of the central point of simply supported linear and nonlinear plate versus time under the action of orbiting mass of 2  at a 

rotation velocity of 130rad/s  and 40xL

h
 with different radius; a) 0.15mr  , b) 0.35mr  , c) 0.6mr  and d) 0.9mr  . 

6. Conclusion 

The nonlinear dynamic behavior of undamped plate under the 

influence of orbiting mass has been evaluated based on first-order 

shear deformation plate theory using finite element method. The 

models have considered mid-plane stretching and all inertia effects 

of the mass such as the inertia force, the Coriolis and centrifugal 

force. The effect of angular velocity, plate thickness, mass ratio 

and radius of orbiting mass on the nonlinear dynamic response of 

square plate carrying orbiting mass is compared with the related 

linear problem. It was found that the maximum plate deflection in 

nonlinear theory was lower than linear theory in most of the time 

in all cases. It was observed that the effect of nonlinearity of plate 

in large thickness is reduced. It was shown that by increasing the 

radius, the difference between the nonlinear and linear vertical 

displacement of plate is increased. Finally, it is seen that effect of 

large deformation on dynamic behavior of the square plate 

considerably depends on the angular velocity of orbiting mass. 

This study reveals the significance of nonlinear analysis of plate 

that carried orbiting mass. 
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