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Abstract  

In this paper, multi-objective optimization of railway wheel web profile using bidirectional evolutionary structural 

optimization (BESO) algorithm is investigated. Using a finite element software, static analysis of the wheel based on 

a standard load case, and its modal analysis for finding the fundamental natural frequency is performed. The von Mises 

stress and critical frequency as the problem objectives are combined using different weight factors in order to find the 

sensitivity number in the method, which specifies which elements to be omitted and which to be added. The iterative 

process is continued until convergence to an a priori specified material volume. The resulted web profiles show that 

when the stress is important, material removal is from the middle part of the web, while for frequency as the important 

objective, the removal is from near the rim part of the web. The suggested profile, corresponding to equal weight factor 

for the objectives, has a better volume and stress state compared to a standard web profile, and has a more uniform 

stress distribution. However, higher natural frequency, compared to that of the standard profile, are obtained for larger 

frequency weight factors, although with a bigger volume. In the end, considering manufacturability of the wheel, the 

jagged profile resulted from BESO is replaced with a fitted smooth curve and performing the finite element analysis 

on it. It is seen that there is an improvement in the obtained objectives for the smoothened profile, with no significant 

change in volume. 
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1. Introduction  

Topology optimization is one of interesting and 

important fields of structural engineering, looking for the 

best possible placement of material in the structure so 

that while the loads are carried safely, minimum amount 

of material is used. For continuous structures, such as 2D 

and 3D beams, columns, even micro-structures, different 

methods of topology optimization, such as SIMP (Solid 

Isotropic Material with Penalization), ESO 

(Evolutionary Structural Optimization), and BESO 

(Bidirectional Evolutionary Structural Optimization) are 

developed. These methods start with an initial material 

domain and gradually, add and/or delete material to/from 

regions which has great/little positive effect on structural 

performance, which might be measured by stiffness, 

strain energy, stress distribution, etc. Since early 

development of ESO by Xie and Steven [1], it was 

employed for optimizing structural performance, such as 

buckling [2]. In ESO, only material elimination was 

performed, starting from a sufficiently large continuum, 

and gradual inefficient material removal. It was then 

changed to AESO (Adaptive Evolutionary Structural 

Optimization), in which material addition in high 

gradient places was performed. BESO, combined the 

advantages of both, considering simultaneous 

addition/elimination of material. Huang and Xie 

improved the performance of BESO by eliminating mesh 

dependency and facilitating convergence [3], and applied 

it to several structural problems, and from there several 

authors used the method for various static and dynamic 

optimization of structures, including solid-fluid 

interaction applications [4-5]. In order to present an 

overall comparison of the methods stated above, ESO has 

the shortcoming just material elimination, and thus the 

initial continuum must be large enough to encounter the 

expected final optimum configuration. Moreover, once a 

material is eliminated during the iterative process of this 

method, it is not possible to bring it back if it would be 

needed for the optimum topology. SIMP is quite similar 

to BESO, except that it considers a continuous variable 

for material existence, which starts at an initial value and 

is gradually moving towards 1 (presence of material) or 

zero (elimination of material), resulting in the final 

topology. The first author’s experience with the method 

has shown that the success and convergence of the 

method is much dependent on how the material existence 

parameter is updated in each iteration, and it may 

diverge. While BESO suffers much less from this 

problem, by considering a binary material existence 

variable.  There are researchers that support either 

method, but BESO has gained a popularity of its own and 

some believe that “BESO has great potential, especially 

considering the latest enhancements, especially when 

combined with other techniques like genetic algorithms” 

[6]. 

In terms of the application considered in this work, a 

railway wagon wheel is considered here. Wheels 

function both as carrying wagon load (statically and 

dynamically), and conducting the wagon in its railway. 

There are different types of wheels based on the type of 

wagon and loading on them, some of which are shown in 

Fig. 1 [7]. There are also profiles claimed to be of lesser 

stress under loading, and of standard profiles in different 

parts of the world [8] (see Fig. 2). 

There are few researches regarding the optimization 

of performance of wagon wheels. Hirakawa and 

Sakamoto studied the variation of effective parameters 

on fracture of wheels [9]. Nielsen and Fredö used the 

method design of experiments for optimization of 

wheels. This justifies our motivation for a new research 

in this field, especially for applying BESO to a 3D round 

structure, for multi-objective optimization. 

 

 
 

                  Fig. 1 Different types of wheel web profiles [6] 

 

 
(a)                                  (b) 

Fig. 2 (a) Low-stress wheel, (b) EN standard wheel [7] 

 

In this work, multi-objective optimization of the 

wagon wheel, considering uniformity of stress 

distribution and natural frequency of the wheel is studied. 

In the next section, the method of BESO, tailor-made for 

multi-objective optimization of the problem at hand is 

explained in detail. In section 3, finite element modeling 

and static and dynamic analysis of the wheel, needed to 

extract BESO parameters are explained, and resulted 
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optimized wheel web profiles, considering different 

weight factors (priorities) for the objective are presented. 

The recommended compromise profile is further 

analyzed, by smoothening the jagged web profile 

resulted from FE-BESO, in order to take 

manufacturability into account. It is shown that the 

modified optimized profile considerably outperforms the 

standard wheel profile, at least in the frame of the two 

objectives considered. 

2.  Method of BESO for multi-objective optimization 

In This section, the method of BESO, which is modified 

to be suited for the current multi-objective optimization 

problem at hand, is explained in detail. 

 BESO is an evolutionary structural optimization 

method with the property of both eliminating the less 

efficient material elements from the structure, and adding 

a previously eliminated material element, which now 

proves to be efficient, in each iteration of an iterative 

procedure. Decision on eliminating or adding elements is 

based on an element-wise parameter, called sensitivity 

number, which shows the sensitivity of the objective(s) 

to the design variable (here, presence or absence of 

elements). Formally, BESO tries to minimize a 

characteristic property of structure volume constraint for 

the structure, as follows 

Minimize 𝑓 = ∑ 𝑃𝑖
𝑁
𝑖=1  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝑉∗ − ∑ 𝑉𝑖𝑥𝑖 = 0       𝑁
𝑖=1 (1) 

𝑥𝑖 = 0 or 1 

 

in which f is the objective function, N is the number of 

elements, 𝑷𝒊 is some characteristic property of the ith 

element (such as stiffness, von-Mises stress, contribution 

to natural frequency, etc.), Vi is the volume of the ith 

element, V* is the target volume for the structure, and xi 

shows the existence (1) or absence (0) of the ith element. 

But instead of direct minimization of objective, its 

sensitivity to the existence/absence of elements is taken 

into account, which causes some live elements to die, and 

some dead elements to become live, subject to a gradual 

evolution of the volume of the structure that approaches 

the target volume V* upon convergence. 

In this work, the wheel is considered both from static and 

from dynamic point of view. Usually for static 

performance in BESO, the stiffness or strain energy of 

the structure is the objective. But there are alternatives 

minimizing the average von-Mises stress in the structure 

[10]. It can be shown that these two schemes are almost 

equivalent [11]. In the work, the second scheme is 

adopted because the von-Mises stress is readily available 

from finite element analysis. In this regard, the sensitivity 

parameter of this objective for the ith element is taken as  

(2) 𝛼𝑖,𝑠𝑡𝑎𝑡𝑖𝑐
𝑒 = 𝜎𝑉𝑜𝑛𝑚𝑖𝑠𝑒𝑠

𝑒  

in which, 𝝈𝑽𝒐𝒏𝒎𝒊𝒔𝒆𝒔
𝒆  is the von-Mises stress for the ith 

element. As for the dynamic (natural frequency) analysis, 

the sensitivity parameter is taken to be [12] 

 

(3) 𝛼𝑖,𝑑𝑦𝑛𝑎𝑚𝑖𝑐
𝑒 =

1

𝑚𝑖

{∅𝑖
𝑒}𝑇(𝜔𝑖

2[𝑀𝑒] − [𝐾𝑒]){∅𝑖
𝑒} 

in which 𝒎𝒊  , {∅𝟏
𝒆}  , [𝑴𝒆] , and [𝑲𝒆] are the mass, 

element displacement vector based on the first mode 

shape, mass matrix and stiffness matrix  of the  ith 

element, respectively, and 𝛚𝟏 is the first natural 

frequency. 

Topological optimization looks for a more uniformly 

stressed structure with the least amount of material. 

Therefore, the optimization problem is stated in its 

simplest form as follows with a volume constraint.  

Before combining the sensitivity numbers to a single 

one for a combination of objectives, they are normalized 

in the interval [0, 1] as follows in order to make the 

combination meaningful 

 

(4) αi,NS
e =

αi,static
e − αstatic

max

αstatic
max − αstatic

min
 

(5) 
αi,ND

e =
αi,dynamic

e − αdynamic
max

αdynamic
max − αdynamic

min
 

 

in which 𝛼𝑖,𝑁𝑆
𝑒  and 𝛼𝑖,𝑁𝐷

𝑒  are the normalized sensitivity 

number for static and dynamic analysis, respectively, and 

the superscripts min and max indicate the minimum and 

maximum corresponding sensitivity numbers among all 

elements, respectively. 

Next, analogous to the combination of multi-objectives 

into a single one using the weighted sum, the multi-

objective sensitivity number for each element of the 

structure is defined by 

 
(6) 𝛼𝑖,𝑚𝑢𝑙𝑡𝑖

𝑒 = 𝜆𝑠(𝛼𝑖,𝑁𝑆
𝑒 ) +𝜆𝑚 (𝛼𝑖,𝑁𝐷

𝑒 ) 
 

in which 𝜆𝑠  and  𝜆𝑚 are the weight factors for the static 

and dynamic objectives, respectively, varying in the 

range [0, 1], showing the importance of each objective. 

In the numerical part, these weight factors are related by 

𝜆𝑠 = 𝜆𝑚 − 1, and are varied in the range to get 

topologies with different priority for the objectives, as it 

will be seen in the next section. 

One of the main issues in ESO is that since the structure 

is discretized into elements, the sensitivity numbers, 

which determine which elements are eliminated or 

added, become discontinuous and therefore result a 

checkerboard pattern (see Fig. 3) in the optimized 

structure, which is unacceptable from manufacturability 

point of view. To overcome this problem in BESO, the 

element sensitivity numbers are redefined as follows in 

order to smoothen their distribution. This also helps the 
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method to become mesh-independent (different mesh 

sizes give rise to more or less the same optimized 

structure) [10]. 

 

 

The technique, which is called filtration, goes as follows. 

First, for every node j in the domain, the nodal sensitivity 

number is calculated by 

 

 
Fig. 4  Circular subdomain of the ith element for 

smoothening the sensitivity numbers 

 

(7) 
𝛼𝑗

𝑛 = ∑ 𝑤𝑖𝛼𝑖
𝑒

𝑀

𝑖=1

 

in which M is the total number of elements common at 

node j, and wi is the weight factor of the ith element given 

by 

 

(8) 
𝑤𝑖 =

1

𝑀 − 1
(1 −

𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑀
𝑖=1

) 

 

with the property  

(9) 
∑ 𝑤𝑖 = 1

𝑀

𝑖=1

 

       Here, rij is the distance from the center of ith element 

to node j. The above definition of weight factors implies 

that element sensitivity number has greater effect on 

closer nodes. Next, these nodal sensitivity numbers are 

used to smoothen the element sensitivity number 

throughout the mesh. For every element i, a circular 

subdomain Ωi with its center at the center of the element 

and with a radius of rmin is considered (Fig. 4). The 

parameter rmin plays the role of identifying nodes that 

influence the sensitivity of ith element. It should be large 

enough so that at least one element surrounding the ith 

element is included in the domain. On the other hand, in 

this scheme, the size of the subdomain is kept constant, 

irrelevant of the mesh size. Having the sensitivity 

numbers of all nodes in the domain, the sensitivity 

number of ith element is redefined as  

(10) 
𝛼𝑖

𝑒 =
∑ 𝑤(𝑟𝑖𝑗)𝛼𝑗

𝑛𝑘
𝑗=1

∑ 𝑤(𝑟𝑖𝑗)𝑘
𝑗=1

 

in which k is the total number of nodes in the subdomain 

and w(rij) is the linear weight factor defined by 

 

 (11) 𝑤(𝑟𝑖𝑗) = 𝑟𝑚𝑖𝑛 − 𝑟𝑖𝑗        (𝑗 = 1,2, … . , 𝑘)  

 

This filtration scheme helps to eliminate both 

checkerboard pattern and mesh dependency. Another 

problem is the instability in the process, which may show 

oscillations in the evolving topology during the process. 

To remedy this issue, the history of evolutions of 

sensitivity numbers is taken into account by defining 

 

(12) 𝛼𝑖
𝑘 =

𝛼𝑖
𝑘 + 𝛼𝑖

𝑘−1

2
  

 

in which k is the current iteration number and the updated 

sensitivity number is used for the next iteration. 

In order to reach the target volume 𝑉∗ upon 

convergence, in the iterative process, a target volume 

Vk+1  is considered for the next iteration, which is changed 

step by step until the final target volume 𝑉∗ is reached. It 

is this iterative target volume which governs how many 

elements should be added to or deleted from the current 

topology. This volume is defined by 

  (13) 𝑉𝑘+1 = 𝑉𝑘(1 ± 𝐸𝑅)      (𝑘 = 1,2,3, … )  

in which ER is the evolutionary volume ratio (The 

plus/minus sign is for the case where the starting volume 

is less/greater than the final target volume). This 

parameter should be set at a reasonable value so that there 

is a smooth gradual change of topology from each 

iteration to next. Once the target volume 𝑉∗ is reached in 

an iteration, it is kept constant for the remaining 

iterations, i.e.  Vk+1  =V*.  

 
Fig. 3 An example of checkerboard pattern in the ESO 

method [10] 

+ rmin 

ith element 

Ωi 



Vol. 48, No. 2, December 2017 
 

311 

To decide which elements to be added or deleted in 

each iteration, the sensitivity number of each element for 

the whole domain is calculated as explained above, and 

sensitivity numbers are sorted (it should be noted that 

void elements also get a nonzero sensitivity number 

based on the filtration scheme). Threshold sensitivity 

numbers 𝛼𝑑𝑒𝑙
𝑡ℎ  and 𝛼𝑑𝑒𝑙

𝑡ℎ  are considered for deleting and 

adding elements respectively. For the ith element, if 𝛼
𝑖

≤

𝛼𝑑𝑒𝑙
𝑡ℎ  , then that element is deleted (xi is set to 0), and if 

𝛼
𝑖

≥ 𝛼𝑎𝑑𝑑
𝑡ℎ , the element is added (xi is set to 1). The 

thresholds are set in each iteration so that the target 

volume Vk+1 for the next iteration is met.  Furthermore, a 

parameter ARmax (maximum volume addition ration, i.e. 

maximum of the ratio of added elements to the total 

number of elements in the domain) controls how many 

elements are added in each iteration, in order to avoid 

loss of integrity of topology in case to many elements are 

to be added. 

As a convergence criterion, both the target volume 

and the combined objective function corresponding to 

the combined sensitivity number (i.e. 𝜆𝑠 ×  maximum 

von-Mises stress + 𝜆𝑚 ×  negative of the first natural 

frequency) are tracked and if their change is less than a 

certain tolerance, then the procedure stops. 

3. In summary, the flowchart for the multi-objective 

BESO is presented in Fig. 5. 

 

4.  Modeling , analysis, and optimization 

 

 Finite element analysis lies at the core of BESO. 

Therefore, the usual sequence of introducing geometry, 

material, meshing, loading and boundary conditions, and 

analysis used in commercial FE software is explained 

here. 

Fig. 6 shows the cross section of a so-called “s-

shaped” wheel. It is used in this research for its rim, hub, 

and overall dimensions. These dimensions are taken 

from standard no. UIC 515-1 [13]. In order to have a 

more realistic wheel-rail interaction during loading, the 

rim is modeled using the detailed geometry from this 

standard, shown in Fig. 7. The geometry of the web is 

what we try to optimize using BESO. But the geometry 

shown in Fig. 6 is used later on for comparison with the 

optimized wheel. 

For rail modeling, the geometry is taken from standard 

UIC-60, shown in Fig. 8 [15]. 
Next, the material is defined, which is steel in this case 

with properties E=200 GPa, 𝜗 = 0.3, and 𝜌=7800 kg/m3. 

In the meshing part, a 3D model of the wheel is 

generated. First, the cross section of the wheel with a 

block for the web (which will be emptied later on using 

BESO) is considered (Fig. 9) as an area and is meshed. 

Next, the meshed area is revolved about the wheel axis 

to generate the 3D wheel, with 20 sectors and 8 divisions 

in each sector, made of SOLID185 elements (Fig. 10). 

To get the proper mesh size, a mesh sensitivity analysis 

was done with a typical run. The wheel cross section was 

divide using different mesh sizes and the maximum von-

Mises stress obtained was taken as the converge 

parameter. The hardware was an Intel(R) Corei5 system 

with 8GB of RAM. The results are shown in table 1. For 

the finest mesh size in the table, the hardware was not 

able to give a result. Based on the von-Mises stress 

values and hardware limitations, a mesh size of 5 by 5 

was considered as appropriate for all the analyses. 

For boundary conditions, since the wheel hub is 

connected to the axle almost rigidly, all the 

displacements and rotations for the inner surface of the 

wheel hole were set to zero. 

As for the loading, the BS EN_13979 standard 

considers different load cases with point loads on the 

wheel rim [16]. One of these cases is for the wheel 

moving in straight line (Fig. 11). In this case, a vertical 

load of Fz with a magnitude of 1.25 times the wagon 

weight per wheel must be applied at the point indicated. 

In order to have a better grasp of wheel-rail interaction 

for this loading, part of the rail was modeled and meshed 

and was brought into contact with the wheel at the point 

of Fz. The external loads on the rail were set in an 

equivalent manner so that the standard load Fz would be 

on the wheel (Fig. 12). For the case study considered 

here, a force of Fz=98.8 kN was applied on the wheel. 

Once the model is prepared, two types of analyses 

are done as follows in order to calculate the sensitivity 

numbers for BESO: 

1- A static analysis is performed with the defined 

loading to get the von-Mises stress as the static 

sensitivity number (Eq. 4). 

2- To get the frequency sensitivity number, a modal 

analysis is done and based on the mass and stiffness 

matrices of elements, and the first natural frequency, the 

sensitivity number is calculated using Eq. (5). 

 

These two analyses are performed using a macro for 

the FE software in each iteration of BESO.  
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Fig. 5 Flowchart of multi-objective BESO 
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Fig. 6 Cross-section of EN standard wheel [14] 

(dimensions in mm) 

 
Fig. 7 Geometry of standard wheel rim with 100-720 

mm diameter [13] 

 

 
Fig. 8 Geometry of UIC-60 rail [15] (dimensions in 

mm) 

 

 

Table 1. Mesh sensitivity analysis 

 

 
Fig. 9 Creation of wheel cross section 

 

 

 
Fig. 10 (a) A wheel with 20 sectors, (b) 3D meshing of 

sectors 

 

Experimenting with the method, the following BESO 

parameters proved to be promising for the problem at 

hand: 

Mesh size Total 

number 

of 

nodes 

Total 

number 

of 

elements 

Maximum 

von-Mises 

stress 

(Pa) 

10mm×10mm 83858 73452 0.779×10 9  

7.5mm×7.5mm 123538 111852 0.861×10 9 

5mm×5mm 230578 215852 0.884×10 9 

2.5mm×2.5mm 782526 758384 NA 
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Fig. 11 Straight path and loading point on the wheel for 

this case [16] 

 

 
Fig. 12 Equivalent rail loading for standard force on the 

wheel 

 

   𝑉∗ = 0.1V𝑡𝑜𝑡𝑎𝑙 , 𝑟𝑚𝑖𝑛 =12.5mm,   𝐴𝑅𝑚𝑎𝑥 =0.5, 𝐸𝑅 =
0.03 

The multi-objective optimization was performed 

using weighted sum method and considering weight 

factors 𝜆𝑠 and 𝜆𝑚, for static and dynamic analysis 

sensitivity numbers, respectively. 

Fig. 13 shows the resulted web profile based on 

different weight factor combinations. It is seen that when 

the dynamic response is less important (lower values of 

𝜆𝑚), the web is thinner in the middle, but once the critical 

frequency becomes of greater importance (higher values 

of 𝜆𝑚), the web becomes thinner at the rim junction. This 

could be justified by considering the web like a beam. 

When lower maximum stresses are needed, the beam 

becomes thicker at both ends, which are closer to loads, 

to diminish the stress. On the other hand, when high 

natural frequencies are needed, the beam becomes 

thicker close to the rigid end (hub) to increase the 

stiffness and thus the frequency. Another interesting 

point is that when static response becomes important 

(𝜆𝑠 = 1), the stress tends to be more uniform throughout 

the web, which is a good sign that BESO is working. 

Figs. 14 to 16 are a proof of convergence of BESO, 

for different weight factors. They show that both the 

volume fraction and von-Mises stress reach 

asymptotically to a final value as the iteration number is 

increases. They are comparable to Fig. 3.3 of Ref. 17.  

In order to make a comparison between the optimized 

wheel and the standard one, an FE model of the standard 

wheel is generated and evaluated statically and 

dynamically (Fig. 17). It is seen that the stress 

distribution in the standard wheel is less uniform 

compared to that of the optimized wheel (𝜆𝑠 = 1) in Fig. 

15. The performance of the standard wheel and those of 

BESO with different weight factors are presented in table 

2. It is seen that all the BESO wheels have a somewhat 

lesser volume than that of the standard wheel. The BESO 

wheels have lower maximum von-Mises stresses (for 

higher values of 𝜆𝑠) and higher natural frequencies (for 

lower values of 𝜆𝑠), than those of the standard wheel, 

which is expected.  

To introduce a compromise optimum solution, the 

profile of (𝜆𝑠 = 0.5 , 𝜆𝑚 = 0.5) , is suggested, with a 

volume of about 3 percent less than that of the standard 

wheel, a lower maximum von-Mises stress, and a 

comparable natural frequency. 

In order to address the manufacturability of the 

optimized wheels, the suggested compromise web profile 

with jagged edges is considered and the edges are 

smoothened with a polynomial curve (Fig. 18). The 

modified, smoothened profile is re-analyzed to see how 

the performance is changed. Fig. 19 shows the von-Mises 

stress distribution for this profile, and the performance 

values are given in table 3. It is seen that the volume 

increase is negligible compared to the original BESO 

profile. But more importantly, the maximum von-Mises 

stress is decreased 17.5 percent, and the natural 

frequency is increased by 11.5 percent, compared to the 

standard wheel. This shows the ability of BESO in 

making lighter structures with high performance. 

 

5. Conclusion.  

 

In this work, multi-objective optimization of railway 

wheel web profile was investigated using BESO. Static 

and dynamic performance of the wheel where analyzed 

using finite element. Based on the combined sensitivity 

number and with different static and dynamic objective 

weight factors, different web profiles were obtained, with 

a better static and/or dynamic performance compared to 

the standard wheel. The compromise suggested solution 

with smoothened profile edges outperformed the 

standard one significantly. As a final note, it should be 

stated that due to lack of enough information and 

equipment, it was not possible for the authors to do a 

verification of the findings. It is suggested as a future 

work to do experiments on the suggested optimal wheel, 

to verify that indeed is optimum or close to it. 



Vol. 48, No. 2, December 2017 
 

315 

 

 
0 𝛌𝐦 =  1  𝝀𝒔 = 

 

 
Initial web block 

 
0.3 𝛌𝐦 =  0.7  𝝀𝒔 = 

 
0.1 𝝀𝒎 =  0.9  𝝀𝒔 = 

 
0.7 𝝀𝒎 =  0.3  𝝀𝒔 = 

 
0.5 𝛌𝐦 =  0.5  𝝀𝒔 = 

 
0.9 𝛌𝐦 = 0.1  𝝀𝒔 = 

Fig. 13 Resulted profiles from multi-objective optimization with different weight factors for the objectives 
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Fig. 14 History of mean von Mises stress and volume 

fraction for 𝝀𝒎 = 0, 𝝀𝒔 = 1 

 
Fig. 15 History of mean von Mises stress and volume 

fraction for 𝝀𝒎 = 0.5, 𝝀𝒔 = 0.5 

 
Fig. 16 History of mean von Mises stress and volume 

fraction for 𝝀𝒎 = 0.9, 𝝀𝒔 = 0.1 

 
Fig. 17 von Mises stress distribution for EN standard 

wheel 

 

 

 

Table 2.  Comparison of volume, maximum von-Mises 

stress and first natural frequency of standard and 

optimized wheel web profile 

First natural 

frequency 

(HZ) 

Maximum 

von-

Mises 

stress      

(108 Pa) 

volume 
(10-3 m3) 

wheel 

web 

profile  

(Figs. 8 

& 15) 

118.6695 0.360 0.1902 Standard 

 

101.4532 
 

0.355 
 

0.1899 
𝝀𝒎 = 0 

𝝀𝒔 = 1 

 

103.0177 
 

0.351 

 

0.1895 

 

𝝀𝒎 =
 0.1 

𝝀𝒔 =
 0.9 

 

102.60 
 

0.357 
 

0.1875 

𝝀𝒎 =
 0.3 

𝝀𝒔 =
 0.7 

 

105.0534 
 

0.354 
 

0.1850 

𝝀𝒎 =
 0.5 

𝝀𝒔 =
 0.5 

 

121.834 
 

0.597 
 

0.1890 

𝝀𝒎 =
 0.7 

𝝀𝒔 =
 0.3 

 

124.1121 
 

0.764 
 

0.1887 

𝝀𝒎 =
 0.9 

𝝀𝒔 =
 0.1 

 
Fig. 18 Smoothening of the discontinuous optimized 

profile,  𝝀𝒎 = 0.5, 𝝀𝒔 = 0.5 
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Fig. 19 Distribution von Mises stress for smoothened 

profile. 

 

Table 3. Volume, maximum von Mises stress and first 

natural frequency for the optimized smoothened profile 

Natural 

frequency 
(HZ) 

Maximum von-

Mises stress 

108 (Pa) 

Volume 
10-3(m3) 

132.367 0.297 0.18757 
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