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Abstract 

Crack propagation modeling in quasi-brittle materials such as concrete is essential for improving the 

reliability and load-bearing capacity assessment. Crack propagation explains many failure characteristics of 

concrete structures using the fracture mechanics approach. This approach could better explain the softening 

behavior of concrete structures. A great effort has been made in developing numerical models; however, some 

models involve complex expressions with too many parameters, and the results are in some cases inaccurate. 

In this investigation, a numerical approach is developed to model the fracture process zone (FPZ). Based on the 

modified crack closure integral (MCCI) method, a new nonlinear spring is proposed to be placed between the 

interfacial node pairs to model crack propagation. A new strain energy release rates for Mode I is calculated as 

a function of opening in the softening part. Two benchmark beams are simulated by the ABAQUS software for 

the accuracy of cohesive zone model. The model decreases complexity of predicting crack propagation. It is 

observed that the cohesive zone model is robust, accurate and able to model the crack growth in the concrete 

beam. The prediction of the crack path is close to the experimental results (up to 90%). The peak loads had 

approximately 7.7% difference compared with the previous experimental loads. The accuracy of displacement 

in the present study is 15.9% compared with previously model at the same load intensity.  
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1.   Introduction 

Sudden failure occurs in concrete structural members 

such as beams due to the quasi-brittle behavior of the 

concrete. In general, sudden failures in concrete 

structures initiate with crack propagation in the tension 

zone because of an increase in stress or an occurrence of 

initial crack. Therefore, these failures should be 

accurately predicted. Material strength and fracture 

mechanics theories are two major groups of theories in 

crack growth analysis. In material strength theory, cracks 

are detected based on strain, stress, or a combination of 

stress and strain. The disadvantage of this theory is that 

eliminating the damaged elements may produce stress 

singularity. Material strength theory, which existed prior 

to fracture mechanics, uses a crack propagation criterion 

with no strain energy effect. It explains the propagation 

of a crack as an unavoidable method of transferring 

energy between the strain energy of an elastic body and 

the fracture energy required to produce a new crack. The 

fracture mechanics theory is considered to be a more 

accurate method for predicting crack growth (1,2), as this 

method is similar to the physical reality of crack 

propagation (3). Two methods are now available for 

fracture analysis in concrete structures. These can be 

broadly categorized into Linear Elastic Fracture 

Mechanics (LEFM) and nonlinear fracture mechanics. 

LEFM was first used to study the crack propagation in 

the warships deployed during World War II (4). In this 

method, a coefficient is applied to the stress in the 

vicinity of the crack tip (5). This coefficient is called the 

stress intensity factor. Since the stress intensity factor 

depends on the material properties, the size of the crack, 

the load, and the geometry of the structure, it presents a 

relationship between the material and the reaction of the 

structure. Stress singularity at the crack-tip is a 

characteristic of LEFM. Later, some studies used LEFM 

in crack propagation analysis, but Kaplan (6) found that 

the deploying LEFM was not acceptable in solving the 

crack problems with normal concrete structures (7). To 

solve the aforementioned problem, Hillerborg et al. (8) 

proposed the first model based on nonlinear fracture 

mechanics for concrete beam. Their study introduced a 

region, often termed fracture process zone (FPZ), which 

has the ability to transfer the normal and shear stress. The 

FPZ plays a remarkable role in the behavior of the cracks 

and their propagation under apply loading. Hence a study 

on the role of the FPZ is indispensable to predict and 

prevent crack propagation under static monotonic load. 

Although more techniques of crack propagation have 

been developed in fracture mechanics, the crack 

modeling to predict the behavior of concrete structures is 

still far from satisfactory (8). Fracture mechanics have 

been employed to model crack propagation in concrete 

with strain-softening behavior (9,10). To describe the 

crack propagation criterion in the fracture process at the 

crack tip, the so-called Griffith energy approach can be 

used. This approach states that the energy release rate, 

defined as the amount of energy stored in the FPZ, which 

is required to form the crack, must be sufficiently larger 

than the critical fracture energy (11). Hence, to study the 

crack state, the crack propagation criterion can be 

defined in terms of the energy release rate (12,13). 

Hillerborg et al. (14) used cohesive stress to simulate the 

FPZ in cracks. In this model the stress reaches the tensile 

strength at the tip of the crack and is reduced to zero at 

the critical opening of the crack (15). The area under the 

stress-opening curve equals to the energy release rate. 

This model is often referred to as the cohesive zone 

model (CZM). It is deployed to model the FPZ in normal-

size structures (16). Either the nodal force release method 

or an interface element with zero initial thickness is used 

for this purpose (17). CZM was first proposed by 

Dugdale (18) to analyze brittle fracture. Hillerborg et al. 

(14) initially used CZM, also known as the fictitious 

crack model (FCM), to calculate the approximate 

softening fracture. In the initial study, they illustrated that 

crack patterning and growth could be accomplished with 

CZM, even though a rough finite element was applied. 

However, by using this method, the mesh sensitivity was 

reduced. Some studies have been carried out to improve 

the CZM (19). Although CZM has been used with the 

finite element method, its use has been limited owing to 

the problems of efficiency and software logistics (3). The 

method proposed by Hillerborg et al. (14) has been 

widely applied because of its practicality, accuracy, and 

cost effectiveness (20). Software, such as the ABAQUS, 

applies the cohesive zone model (CZM) to demonstrate 

crack propagation. Two types of interface elements were 

deployed to develop the CZM. One of the most widely 

used interface elements was the continuum cohesive 

zone model (CCZM). The alternative interface element 

called discrete cohesive zone model (DCZM) was simple 

to implement (21). The DCZM was based on the basic 

idea that the cohesive zone behaved as a spring. This 

point of view suggested the use of a spring element 

between interfacial node pairs instead of a 2-D interface 

element along the crack path. DCZM was applied in the 

some investigation in the literature review because this 

method reduced the computational time and was 

compatible with the finite element (FE) method 

(22,23,24). One of the methods for crack propagation 

modeling (25) in the DCZM was the virtual crack closure 

technique (VCCT). This technique calculates the energy 

used for closing the crack by multiplying the nodal force 

and displacement opening. The crack length will increase 

if the energy release rate is larger than the crack 

resistance. This method was computationally 

inexpensive and provided satisfactory results (26,27).  

A great effort has been made in developing numerical 

models; however some of the developed models have 

complex expressions involving many parameters, and the 
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Real crack 

results are somewhat inaccurate (17). Thus, the exact 

model to predict the crack propagation is still under 

debate. In this investigation, a numerical approach is 

developed to model the FPZ. Based on the modified 

crack closure integral (MCCI) method, a new nonlinear 

spring is proposed to place between the interfacial node 

pairs in order to model the crack propagation. The new 

strain energy release rates for Mode I as a function of 

opening in the softening part can be calculated. 

2.   Materials and Methods  

2.1 Interface element based on DCZM 

Modified crack closure integral (MCCI) method is 

applied to model DCZM for Mode I fracture. Thus, a 

nonlinear spring is proposed to be placed between the 

interfacial node pairs (Figure 1). In this figure, the node 

pairs ‘1’ and ‘2’ have initially the same coordinates. 

Spring softening is set at the crack tip between the nodes 

‘1’ and ‘2’. Node ‘3’ is a dummy node and it is only used 

to illustrate the variation in the crack form. The 

undamaged tangential stiffness matrix, K, of the spring 

related to nodes ‘1’ and ‘2’ are given by: 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1. Spring interface element between two nodes 
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                             (1) 

where kx and  ky are the stiffness values corresponding to the 

local coordinates x and y, respectively. The stiffness matrix 

is assigned to the AMATRX in the ABAQUS UEL. 

During the elastic zone, tangential stiffness matrix can be 

estimated as: 

    kx =
GB∆𝑎

h
and   ky =

EB∆𝑎

h
                          (2) 

where B is the thickness of the beam, h is the thickness of the 

FPZ and ∆𝑎 is the element size. The  E and G are Young’s 

modulus and shear modulus, respectively. The elastic zone is 

defined where  0 < 𝛿 < 𝑤0 .  𝑤0 is the critical opening.  

 

2.2 Discrete Cohesive Zone Model 

Figure 2 illustrates the softening stiffness part. A triangular 

type cohesive law is used in this research. On the softening 

part of the cohesive law, ksoft , stiffness for mode I is 

determined as:  

     ksoft =
𝜎𝑙

w
                                                                    (3) 

where σ  and w are the stress and opening in the softening 

part,  respectively. On other hand, we have: 

ft

wc-w0

 =
𝜎𝑙

wc-w
⇒𝜎𝑙  =

ft(wc-w)

wc-w0

                                (4) 

where wc and ft  are the maximum opening and tensile 

strength of the concrete , respectively. Substituting Eq. (4) 

into Eq.(3) leads to: 

ksoft =
ft(wc-w)

w(wc-w0)
                                                     (5) 

The strain energy release rate for Mode I, GI, is 

GI =
ftwc

2
+

(w-w0)

2
(ft+σ)                                     (6) 

Substituting Eq.(4) into Eq.(6) leads to: 

GI=
ftw0

2
+

(w-w0)

2
(ft+

ft(wc-w)

wc-w0

) =
ftwc

2
+

ft(wc
-w)(w-w0)

2(w
c
-w0)

.       (7) 

When w < w0, GI = 0.0 and  ky is calculated by Eq. (2). 

When w0 <  w < wc , the softening part of the cohesive law, 

 ky = ksoft  and is determined from Eq. (5), GI is determined 

from Eq. (7) . When w > wc,  ky is equal to zero,GI = GIc 

and the element is removed. The  GIc is the critical fracture 

energy of Mode I in the concrete which is the total area under 

the curve. This formulation is implemented through a user 

defined subroutine UEL in the ABAQUS. 

∆𝑎 𝑦 

𝑥 

1  2 

ky 

kx 
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Shear stress is transferred by fracture zone, kx, in the tip of 

crack that it is required to be modeled by interface element. 

Experimental formulation is applied by Jeang and Hawkins 

(28) to the stiffness values, kx, corresponding to the local 

coordinates x.  
 

 

Figure 2. Triangular type cohesive law for the concrete 

2. 3 Formulate and Calculate Crack Extension and FPZ 

Length 

Previous modeling of crack propagation regarded crack 

extension length as the mesh size. Crack extension is related 

to the ratio of the notch length to the beam depth and the 

crack opening (29) and does not depend on the mesh size, 

thus, crack extension must be accurately defined in the 

model. Crack extension is essential in the fracture mechanics 

and is based on the FPZ length. Crack extension has a linear 

relationship with the FPZ length until COD reaches 3.6 

Gc ft⁄ , where ft is the tensile strength of concrete beam. Then, 

crack extension increases and the FPZ length decreases. 

Thus, crack extension can be derived as follows (23): 

If     ∆u≪ 3.6
GC

ft
 :  L′ = lp(h-a0)  

If      ∆u> 3.6  L′ = -0.1 lp(h-a0)+0.91    (8) 

where  L′, h and a0 are the crack extension, the depth of 

the beam and the length of the initial notch, respectively. 

Thus, an exact criterion for FPZ length is necessary to 

estimate the crack extension. The present study used the 

experimental results of Xu et al. (23) to evaluate FPZ length. 

Figure 3 (a) shows an effective crack, in which lp,  aσ=0 , and 

a  are the FPZ length, the stress-free region length, and 

effective crack length, respectively. 

 
(a) Effective Crack 

 

 
Figure 3. Crack extension and FPZ length for concrete 

beam obtained by the experimental results of Xu et al. (23) 

  

Figure 3 (b) illustrates the linear relationship between the 

FPZ length and the effective crack length (Xu et al., 2011). 

The FPZ length initially increases up to the maximum value 

of 0.42 h at a= 0.82 h and then decreases until it reaches the 

value of 0.18 h at a =0.93 h. The advantage of the present 

model is that the size effect on the FPZ length is considered 

based on the aforementioned approach.  

Moreover, when the FPZ length is fully extended and 

reaches the maximum rate, the stress-free length occurs in 

front of the notch or the macro-crack behind the FPZ (Wu et 

al., 2011), this finding was not considered by previous 

researches. An accurate explanation of propagation and 

crack formation must be considered in the model, such as a 

stress-free region length formulated in finite element 

methods as follows: 

aσ = 0=N ×∆𝑎                                                                                               (9)  

where  aσ = 0  and N are the stress-free region length and 

the number of elements that have failed behind FPZ, 

respectively. When FPZ is fully propagated, the N element 

is set to zero behind the crack and the crack grows along the 

respective element. The direction is considered at each step. 

For the first time, this stress-free region is considered and 

formulated using the FE method to predict the crack 

propagation accurately. 

Another issue to model the crack is its direction. The initial 

direction of the propagation is usually unknown. Thus, many 

researchers proposed to use the approximate re-meshing 

algorithms. In such algorithms, a significant number of nodes 

are created for re-meshing; resulting in creating large 

stiffness matrices, splitting some of the elements, and 

increasing the computational complexity and time. An 

alternative method is the inter-element boundaries technique 

which directs the crack path. In this investigation, the crack 

follows existing the inter-element boundaries and no re-

meshing algorithm is needed. The orientation angle (θ) of 

element is (Figure 4): 
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1
)
2

                                       (10) 

where x1 and  y
1
 are the coordinates of the components 

node ‘1’ and x3 and  y
3
 are the coordinates of the components 

node ‘3’. In this investigation, the direction of the crack is 

implemented by a method in which the crack follows the 

existing inter-element borders. This method has a simple 

algorithm and there is no need for re-meshing. Crack 

propagation follows one of the inter-elements (AB) or (AC) 

paths where it is assumed that the crack will not stop and 

intersect the main element (Figure 4). There are two possible 

cases for the crack path; if the orientation angle (𝜃), is less 

than 45°, the growth path is AB, otherwise AC.  

The stiffness matrix, the nodal forces and the displacements 

can be transformed in the local (x, 𝑦) system to the global 

system ( X,Y) by using the transformation matrix. 

3.   Results and discussion  

This section provides an additional check for the accuracy of 

the DCZM compared with the previous experimental results 

and other numerical results on concrete beams. Two 

benchmark beams are simulated (16) by the ABAQUS 

software, which have been reported in the literature. 

Figure 5 shows the tested plain, the four-point single-

edge notched shear beam by Arrea and Ingraffea (30). This 

beam was considered a benchmark for crack propagation 

analysis. The material properties of the concrete were 24,800 

MPa for the Young’s modulus, 0.18 for the Poisson’s ratio, 

and 4 MPa for the tensile strength. The thickness of the beam 

was 152 mm, and the length of the initial notch was 82 mm. 

The parameter values of the fracture were Gc=150 N/m, wc 

= 0.135 mm, and w0  = 0.0001 mm. The dimensions of the 

mesh elements should be fine in the area of the possible 

cracking to obtain the accurate results. 

 

 

 

Figure 4. Two Possible cases for the direction of propagation 

 

Figure 5 Four-point single-edge notched shear beam  

Figure 6 indicates the load versus the crack mouth sliding 

displacement curve by the ABAQUS software result, which 

were compared with the experimental results (30), a model 

of Xie and Gerstle (31). The beam was modeled by the 

ABAQUS software with 7,899 C3DBR elements (the 

average size was 1.5 mm  × 1.5 mm). The figure shows that 

the peak loads were close to each other. The present 

numerical results were acceptable compared with that of the 

experimental envelope. The accuracy of the peak loads 

compared with modeled proposed by Xie and Gerstle (30) 

was 29.5%. In the softening zone after 60 kN, the present 

model showed better agreement in terms of the ductility 

observed in the experimental results than the proposed model 

by Xie and Gerstle (30). This may be due to the stress-free 

zone, the crack extension and the FPZ length in the tip of the 

notch was not considered in previous models such as 

modeled by Xie and Gerstle (30). In the elastic part, the cure 

rests on the mid-point of the previous experimental results 

(30). The difference between the proposed model and the 

experimental result was inevitable because the behavior of 

concrete was assumed to be linear elastic in the fracture 

mechanics. However, in reality, concrete is nonlinear plastic. 

 

Figure 6. Load-CMSD curves for shear beam 

The peak loads had approximately 7.7% difference 

compared with the experimental load. After the peak load, 

the curve in the softening zone (up to 55 kN), which turned 
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slightly brittle, were closer to the experimental result than the 

numerical model (31). In the softening zone after 55 kN, the 

present model showed better agreement in terms of the 

ductility observed in the experimental results than the 

previous studies. This finding is attributed to the fact that the 

stress-free zone at the tip of the notch was not considered in 

the modeling. 

As shown in Figure 7, the results from the conventional 

VCCT and CCZM is performed without considering the 

variations of the FPZ length and the crack extension. It can 

be seen that the results do not agree with the experimental 

data and in the elastic zone, the stiffness of the beam in 

conventional VCCT and CCZM are more than in the 

experimental data. Also, the peak loads from the 

conventional VCCT and CCZM are larger than those of the 

experimental and proposed DCZM. 

As shown in Figure 8, Mesh (a) had 864 elements [the 

element average size is 1.7 mm × 1.3 mm, with finer mesh 

(15 mm × 1.0 mm) at the initial notch area] and 324 interface 

elements. Mesh (b) had 1,026 elements [element average size 

is 1.5 mm × 1.0 mm, with finer mesh (1.4 mm ×0. 9 mm) at 

the initial notch area] and 508 interface elements. Mesh (c) 

had 1,862 elements [the element average size is 1.2 mm × 

0.8 mm, with finer mesh (1.0 mm × 0.5 mm) at the initial 

notch area] and 875 interface elements. The approximate 

matching of the three curves demonstrates the independence 

of the model from the mesh size and shows that the model 

exhibited fast convergence. Although, the mesh size was 

changed in the model, no significant change in the peak load 

was observed. 

 

Figure 7.Comparisons of Load-CMOD curves for proposed 

DCZM, conventional VCCT and CCZM 

 

Figure 8. Comparison between three meshes with the 

experimental results (29) 

 

Figure 9 (a) shows the predicted crack path, which is 

compared with the results from the experimental test 

obtained [Figure 9 (b)]. The prediction of the crack path was 

close to the experimental results (up to 90%). The FPZ 

propagation elements are shown in red lines, while the stress-

free elements are displayed in black. It should be noted that 

the crack path is smooth, although in this study the crack path 

is illustrated by unconventional lines. The tensile damage is 

defined from 0 to 0.1 in the ABAQUS software. The result 

showed that the maximum value of the damage parameter is 

0.407 > 0.1. Therefore, the tensile damage occurred near the 

notch and along red lines as shown in Figure 9 (a).
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(a) Result of the ABAQUS software 

 

 

 

 

 

 

 

 

 
(b) Test results (31) 

 
Figure 9. Crack paths in the shear beam  

 

 

      The second example was a reinforced concrete beam 

with simple supports (Figure 10), which was tested by 

Bresler and Scordelis (32). This beam test, which was 

performed by Bresler and Scordelis (32), has been widely 

used for validating nonlinear FE models to simulate the 

behavior of RC structures (33). The geometry of the RC 

beam was 4,572 mm long and 305.8 mm thick. The material 

properties of the plastic were 24,000 MPa elastic modulus 

and 0.18 Poisson’s ratio, whereas that of the steel were 200 

GPa the elastic modulus, 0.3 the Poisson's ratio, 3,290 mm2 

cross-sectional area, and 552 MPa yield strength. The tensile 

strength of the concrete was 2.8 MPa and COD was critical 

at 0.152 mm. The two-node truss element was used to model 

the steel bar with perfect plastic behavior. The beam was not 

reinforced with stirrups. The analysis considered plane 

stress, and half of the beam was simulated for modeling in 

the symmetrical condition (Figure 10). 

The bond between the longitudinal bars and the concrete was 

assumed perfect. The load versus the deflection curve at the 

mid-span of the beam is compared with the experimental 

result (32), and the analysis results of Arrea and Ingraffea 

(30), as shown in Figure 11. The beam was modeled by the 

ABAQUS software with 4,814 C3DBR S4R elements (the 

average size was 1.7 mm × 1.7 mm × 1.7 mm). 
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Figure 10. Half of the RC beam (Unit: mm) 

 

Figure 11. Comparison of load-deflection at the mid-span  

      The stiffness in the present study was slightly higher than 

that in the experimental observation (approximately 10%). 

This error may be acceptable because the crushing, nonlinear 

behavior of the concrete and the plastic deformation were 

neglected in the fracture mechanics. The accuracy of the 

displacement in the present study compared with modeled by 

Arrea and Ingraffea (30) is 15.9% at the same load of 300 

kN.  

      Figure 12(a) shows the crack paths in the present study. 

Figure 12(b) shows the crack patterns at a load of 285 kN in 

the experimental study (32). Flexural cracks occur under the 

initial load. The effective crack length was 10.2 mm at 54 kN 

load in the vicinity of the mid-span and 262.7 mm at 100 kN 

load. Shear crack started at approximately 170 kN load at the 

support and expanded upward as the load increased. 

     The experimental model shows 13 cracks, including the 

flexural and shear cracks. These cracks incline toward the 

load, except for the first crack. A total of 14 cracks were 

predicted in the present model, in which the 2 cracks near the 

mid-span did not detour. Given that the single-active-crack 

mode strategy was used to simulate multiple cracks as 

proposed by Shi et al. (7), the results showed that the 

predicted crack patterns were close. Therefore, the model 

presented in this study showed acceptable similarity to the 

previous experimental results. 

4.   Conclusion 

In this study fracture mechanics is implemented to model 

cracks propagation with strain softening behavior in concrete 

beam. The cohesive zone model is used by the finite element 

method to model the Mode I fracture of the concrete beam. 

A nonlinear spring is proposed to be placed between 

interfacial node pairs to model the crack propagation. As a 

function of opening in the softening part, strain energy 

release rates for Mode I can be calculated at the same time. 

Two benchmark beams are simulated by the ABAQUS 

software for the accuracy of the cohesive zone model. It is 

observed that the cohesive zone model is robust, accurate and 

it is able to model the crack growth in the concrete beam. The 

prediction of the crack path was close to the experimental 

result (up to 90%). The peak loads had approximately 7.7% 

difference compared with the previous experimental load. 

The difference between the displacements in the present 

study compared with the previous model at the same load is 

15.9%. The simulation results are close to the available 

experimental results. This model improves the result of the 

analysis of discrete crack propagation. 

 

 

 
(a) Crack predicted by the ABAQUS software  

 
(b) Crack predicted by test result (33) 

 

Figure 12. Crack predicted at 285 kN load  
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