
JCAMECH
Vol. 48, No. 2, December 2017, pp 161-170

DOI: 10.22059/jcamech.2017.238226.166

161

Accelerating high-order WENO schemes using two

heterogeneous GPUs

Hossein Mahmoodi Darian1,

1Faculty of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran

Received: 21 July. 2017, Accepted: 1 Sep. 2017

Abstract

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous

flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms

are discretized by the standard fourth-order central scheme. The code written in CUDA programming language

is developed by modifying a single-GPU code. The OpenMP library is used for parallel execution of the code

on both the GPUs. Data transfer between GPUs which is the main issue in developing the code, is carried out

by defining halo points for numerical grids and by using a CUDA built-in function. The code is executed on a

PC equipped with two heterogeneous GPUs. The computational times of different schemes are obtained and

the speedups with respect to the single-GPU code are reported for different number of grid points. Furthermore,

the developed code is analyzed by CUDA profiling tools. The analyze helps to further increase the code

performance.

Keywords:

 Multi-GPU, CUDA, OpenMP, WENO schemes, Compressible viscous flow

 Corresponding Author. Tel.: +98 2161112158; Fax: +98 2161112174

Email Address: hmahmoodi@ut.ac.ir

mailto:hmahmoodi@ut.ac.ir

Hossein Mahmoodi Darian

162

1. Introduction

In recent years by the appearance of many-core GPUs,

there has been a growing interest in utilizing graphics

processing units (GPU) in scientific computations. In the

area of computational fluid dynamics (CFD), researchers

have been exploiting this capability to reduce the

computational time of the simulations. From the many

recent studies, we may mention [1-3].

Using high-order methods are necessary to

effectively resolve complex flow features such as

turbulent or vortical flows [4]. For shock-containing

flows, linear high-order methods are not suitable and

instead high-order shock capturing schemes such as

weighted essentially non-oscillatory (WENO) schemes

[5, 6] should be used. However, these schemes are

complex and have more computational cost than linear

high-order schemes, such as compact or non-compact

schemes [7-10].

Athanasios et al. [11] ported a Navier–Stokes solver

on GPU, which used high-order WENO schemes for

computing the convective fluxes. They used domain

decomposition technique to distribute grid points

between thread blocks inside the GPU. In [12, 13] the

GPU implementation of high-order shock capturing

WENO schemes is studied in very detail for multi-

dimensional linear wave equation, Euler equations of gas

dynamics and Navier-Stokes equations. The scope of this

work is to investigate the acceleration of these schemes

(third- to ninth-order) using more than one GPU. The

programming language is CUDA. For utilizing several

GPUs simultaneously, one may use MPI (Message

Passing Interface) or OpenMP (Open Multi-Processing)

libraries. When the GPUs reside on several PCs, MPI is

the only choice. However, when the GPUs reside on a

single PC, using OpenMP is preferred because of its

simple code execution and debugging. Due to

computational resources, only two GPUs are utilized in

this research. Since both the GPUs reside on a single PC,

the OpenMP library is used for parallel execution.

2. Test Problem

A viscous test case is used to verify and assess the

developed code. The test case, known as shock-mixing

layer interaction, is generally used in literature to

examine the performance of shock capturing schemes for

interaction of shock waves and shear layers [13-16]. The

governing equations are the two-dimensional

compressible Navier-Stokes equations in the non-

dimensional form:

2

2

2 2

0 0

, , , ,

() ()

, (1)
2

v v

t x y x y

xx yxv v

xy yy

xx xy x yx yy y

U F G F G

u v

u u p vu
U F G F G

v uv v p

u v q u v qE E p u E p v

u v
E e p e

2 2

3 2 2

4 4
, (),

3 Re Re 3 Re

,
(1) Re Pr (1) Re Pr

1 110.3
, ,

300

xx x xy yx y x yy y

x x y y

u u v u

q T q T
M M

c p
T c T M

c T

 (1)

where , u , v , p , and e denote the density, x-

velocity, y-velocity, pressure and internal energy per unit

mass, respectively. The computational domain is

200 40x yL L and the flow properties are 1.4 ,

Pr 0.72 , Re 1500 and 5.625M . An oblique

shock originating from the upper-left corner interacts

with a shear layer where the vortices arise from the shear

layer instability. This oblique shock is deflected by the

shear layer and then reflects from the bottom slip

wall. Simultaneously, an expansion fan forms above the

shear layer and at the downstream, a series of shock

waves form around the vortices.

Vol. 48, No. 2, December 2017

163

Figure 1 Schematic view of the shock/mixing-layer interaction

configuration (By courtesy of Ref. [16] authors).

Figure 1 wohsw co wio o cci c s hh co hths . The

left inflow boundary condition is specified with a

hyperbolic tangent profile for the x-velocity component

and a fluctuating profile for the y-velocity component

2

2

1

1 1
ˆ ˆ2.5 0.5 tanh(2) , cos(2 /)exp(/ 2)

ˆ3,
2

k k

kr r

y

r

u y v a kt T y
u u

L
u y y

(2)

with a period of / cT u , a convective velocity of

2.68 /c ru u and a wavelength of 30 . Other

constants are given by 10b , 1 2 0.05a a , 1 0

and 2 / 2 . Also, the inlet density and pressure are

as follows

2

ˆ0.3626 01 0.3327
, 1.6374

ˆ1.6374 0
r

r r r

y
p

y u

The upper inflow boundary conditions are

2

2.9709 0.1367 2.1101 0.4754
, , ,

r r r r r

u v p
u u u

and the lower boundary is a slip wall and the outflow

boundary has been arranged to be supersonic

everywhere. For more details on the initial and boundary

conditions we refer the reader to [14, 16]. Note that, due

to different reference values (,)r ru , the results of

360t are equivalent to that of 120t in [14,

15]. Figure 1 also shows the density schlieren at 360t

.

The convective terms are discretized by WENO

schemes and the viscous terms are discretized using the

standard fourth-order central difference scheme. One-

sided second-order and third-order schemes are used for

boundary and near boundary points, respectively. The

time integration method is the third-order TVD Runge–

Kutta scheme developed in [5]:

(1)

(2) (1) (1)

1 (2) (2)

()

3 1 1
()

4 4 4

1 2 2
()

3 3 3

n n

n

n n

U U t L U

U U U t L U

U U U t L U

(3)

nhc co c iholtccNE co gni htto wt ht ch

iholt o wio o w Nh o clco i titt cchNw hhl

io l ic lcwcci h iholhwcchNt l co ohwc cco

ihNwtocNE i lN t cN co ihh .

3. Domain and Grid Decomposition

The domain is decomposed into two sub-domains

along x-direction. Each sub-domain is assigned to a

single GPU. This means if a grid of
x yM M is

considered for the domain, then each sub-domain is

assigned a grid of
x yN N where / 2x xN M and

y yN M (see Figure 2).

Each GPU has its own dedicated memory. Therefore,

for computing the convective and viscous terms for the

points near the common boundary of the sub-domains,

we require the points from the other sub-domain which

is allocated on the other GPU. The usual technique is to

define halo points corresponding to the points on the

other grid and copy the necessary data from the other

GPU to these halo points. This data transfer is the main

issue in converting a single-GPU code to a multi-GPU

code. Figure 2 shows the addition of one layer of halo

points to each sub-domain. However, more halo points

are required for the schemes used in this simulation. For

a (2 1k)th-order WENO scheme, k layers of halo points

and for the fourth-order central scheme, 2 layers of halo

points are required. Therefore max(2,)k layers of halo

points must be considered for each domain.

4. OpenMP Implementation

The OpenMP library is used to modify a single GPU code

to simultaneously utilize both the GPUs. For the details

of the single-GPU code the reader is referred to [13]. The

following parts of the developed codes compare the

single-GPU and double-GPU implementations:

Hossein Mahmoodi Darian

164

Figure 2 Top: Domain decomposition. Bottom: Addition of one-layer of halo points to each sub-domain. The curved arrows show

the data transfer between sub-domains

Single-GPU code:
subDomain *d_dm;
…
SomeKernel<<<blockPerGrid,threadPerBlock>>>(d_dm);
…

Double-GPU code:
const int numDevs = 2; //number of GPU devices
omp_set_num_threads(numDevs); //create as many CPU threads as those of GPU devices
subDomain *d_dm[numDevs];
…
#pragma omp parallel
{
 int iDev = omp_get_thread_num();
 cudaSetDevice(iDev);
 …
 SomeKernel<<<blockPerGrid,threadPerBlock>>>(d_dm[iDev]);
 …

Note that the number of OpenMP threads is set to be

the same as the number of GPU devices (see also Figure

2). To lc bt cyl “wtbDho cN” cw “wcltic” socio

includes the sub domain properties and the address of

arrays on a GPU device as given below

Struct subDomain{
 int Nx,Ny; // Grid dimensions
 float *x,*y; // address (array) of position variables
 float *rho; // address (array) of density variable
 …

Data transfer is required before each stage of the

Runge-Kutta time integration. This means three times

per time step. The following part of the code shows how

each OpenMP thread transfers data from one GPU to the

other:

Nx

Nx = Mx/2
Ny = My

Nx

Ny

0

GPU ID = OpenMP Thread ID

1

Vol. 48, No. 2, December 2017

165

Double-GPU code:
size_t transferSize = N_EQN * (Ny+2*numHaloPoints) * sizeof(float); // N_EQN = 4

GPU_SendBuffer <<<bpg[20], threadperblock >>>(U, pdm);

#pragma omp barrier

switch (iDev)

{

case 0:

 cudaMemcpyPeer(omp_dm[0].RRecvBuffer, 0, omp_dm[1].LSendBuffer, 1, transferSize);

 break;

case 1:

 cudaMemcpyPeer(omp_dm[1].LRecvBuffer, 1, omp_dm[0].RSendBuffer, 0, transferSize);

 break;

}

#pragma omp barrier

GPU_RecvBuffer <<<bpg[20], threadperblock >>>(U, pdm);

Data transfer between GPUs is done by

“ith M oilyP l” htNicchN. This is a CUDA built-in

function. Here, we see the thread 0 is responsible to copy

data from GPU 1 to GPU 0 and simultaneously thread 1

is responsible to copy data from GPU 0 to GPU 1. The

function may be called four times for each of the

conservative variables (𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸). However, it is more

efficient to send and receive all the required data by a

single call. Therefore, two kernels are added to the code:

“GPU_S NhBthh l” and “GPU_R i Bthh l”. To iernel

“GPU_S NhBthh l” copies the halo points’ values of the

four conservative variables a buffer array and then with

 wcNEt i tt hh “ith M oilyP l”t co h c cw w Nc hlho

a GPU to the buffer array of the other GPU. Finally, the

i lN t “GPU_R i Bthh l” copies the transferred data to

the corresponding arrays of conservative variables.

Figure 3 shows a schematic diagram of the send-receive

process on both the GPUs.

To tcN w b hhl Nh hc l co bthii hh “wsccio”

statement (“#pragma omp barrier”), prevent the CPU

threads from computing the next stage before the other

thread finishes its corresponding data transfer task. This

is necessary to have updated values in the halo points.

Another important issue is the implementation of

boundary conditions. The inlet boundary must be

managed only by thread 0 and similarly the outlet

boundary must be managed only by thread 1. This is

simply accomplished by an if-statement in the code.

Figure 3 Top: Thread 0, GPU 0 Sends to GPU 1. Bottom:

Thread 1, GPU 1 Sends to GPU 0.

5. Numerical Results

First, the simulations are carried out using a uniform grid

of 512×128. Specifically, each GPU is assigned a grid of

256×128. In addition, for instance, for the WENO9

scheme, five layers of halo points are added to the grids

which results in a grid of 266×138 for each GPU. Also,

the number of threads per block is taken to be 256.

Figure 4 shows the density contours for both the

single- and double-GPU codes using WENO9 scheme.

The figure displays the flow after reaching the fully

periodic state. Note that, due to different reference

values, the results of t = 360 are equivalent to that of t =

Hossein Mahmoodi Darian

166

120 in [14, 15]. The obtained results verify the developed

double-GPU code.

Figure 4 Density contours at 360t . Top: Single-GPU. Bottom: Double-GPU.

Figure 5 compares the density distribution along

150x for different WENO schemes. The figure also

shows a WENO9 solution obtained on a finer grid. The

figure demonstrates by increasing the order of the

WENO scheme more accurate solutions are obtained

especially in the complex region of the flow.

Figure 5 Density distribution along 150x at 360t .

The PC which runs the simulations, is equipped with

two different GPUs: the first GPU is a GeForce GTX 750

Ti and the second one is a GeForce GTX 550 Ti TOP

GPU. Table 1 shows the important specifications of the

GPUs. Therefore, it is not efficient to assign equal

number of nodes to both of them. Since the first GPU has

better specifications, more nodes must be assigned to this

GPU. By running the code for each GPU separately

y

0.2 0.4 0.6 0.8 1 1.2
10

15

20

25

WENO3_512x128

WENO5_512x128

WENO7_512x128

WENO9_512x128

WENO9_2048x512

Vol. 48, No. 2, December 2017

167

(single GPU run), it is found that that the computational

performance of the first GPU is two times more than that

of the second one. In addition, by running the double-

GPU code, it is found that the best performance achieves

when 11/16 and 5/16 of the nodes are assigned to the first

and second GPUs, respectively. For instance, a grid of

256×256 is decomposed into two grids of 176×256 and

80×256.

Table 1: The GPUs specifications.

GPU Compute

Capability

Clock

Speed

Effective

Memory

Clock Speed

Memory CUDA

Cores

Memory

Clock

Speed

Maximum

Registers

per Thread

Max.

Shared

Memory

GTX 750

Ti

5.0 1020 MHz 5400 MHz 2 GB 640 1350 MHz 255 64 KB

GTX 550

Ti

2.1 900 MHz 4104 MHz 1 GB 192 1026 MHz 63 48 KB

Table 2 compares the runtimes obtained by a single-

GPU code and those of the double-GPU code. Note that

the runtimes for the single-GPU code belong to the

second GPU and are reported from [13], where it was

optimized and assessed in very detail on the second GPU.

The speed-ups are also reported in the table. For the

single-GPU runs, as expected, the runtimes increase as

the order of the WENO scheme increases. However, for

the double-GPU runs the runtimes of the WENO7

scheme are more than that of the WENO9 scheme, which

is peculiar.

Table 2: Comparison of Single- and Double-GPU runtimes.

Grid Single-GPU

time

Double-GPU

time

speed-up Single-GPU

time

Double-GPU

time

speed-up

 WENO3 WENO5

256×256 7.98 4.61 1.73 10.01 5.42 1.85

512×512 28.95 15.30 1.89 37.68 18.41 2.05

1024×1024 114.98 55.72 2.06 150.62 68.12 2.21

 WENO7 WENO9

256×256 11.52 8.91 1.29 13.75 6.31 2.18

512×512 43.91 32.47 1.35 52.69 20.99 2.51

1024×1024 175.85 123.82 1.42 211.27 78.30 2.70

CUDA profiler is a tool, which helps the programmer

to analyze each kernel and identify opportunities to

optimize the GPU code. In addition to a kernel runtime,

an important quantity to assess a kernel is the achieved

occupancy. Roughly speaking, the occupancy indicates

how much a kernel utilizes the GPU resources. Figure 6

shows the runtimes, the achieved occupancy and the

number of registers per thread for WENO kernels on

each GPU on a grid of 256×256. The figure shows for the

second GPU the runtimes of the WENO schemes

increases gradually as expected. For the first GPU the

same trend is observed except for the WENO7 scheme,

which its runtime is significantly more than the other

WENO schemes. The figure also shows, except

WENO7, the runtimes of each WENO scheme are nearly

equal for both the GPUs, which indicates the

computational load is balanced between both the GPUs.

Considering the achieved occupancy for each kernel,

we see a meaningful relation between the higher

occupancy and less computational runtime. The

occupancy of all the WENO schemes on the second GPU

are almost the same and are about 30 percent. However,

on the first GPU the occupancies are considerably

different from each other. The occupancy for the

WENO3 and WENO5 schemes are about 25 and for the

WENO7 and WENO9 schemes are about 12 and 47

percent, respectively. The low occupancy of the WENO7

scheme on the first GPU is responsible for its high

computational runtime (see table 2). The reason for the

low occupancy of this scheme (according to CUDA

profiler) is the number of registers and the amount of

shared memory.

The GPU device has several types of memory [17]:

the global, register and shared memory (see table 1).

Although the global memory is the main memory of the

Hossein Mahmoodi Darian

168

GPU, it is the slowest memory. Register memory resides

in GPU chip and is the fastest GPU memory. The

variables defined inside a kernel are local variables,

which reside on global or register memory. The compiler

automatically places some of these variables in the

register memory space and places the remaining in global

memory.

 Depending on the available number of registers per

thread, the compiler most probably places scalar

variables and static small arrays in register memory.

Because the complier make this decision, the

programmer does not have enough control on the

placement of local variables. However, the programmer

can limit the number of register variables. Figure 6 also

shows the number of registers used by each kernel on

both the GPUs. The second GPU uses its maximum

registers (63 as seen in table 1). The first GPU uses

different number of registers for each kernel. Although

the register memory is the fastest memory, using more

registers may affect the occupancy and cause lower

performance. This is also true for shared memory. As

seen in the figure, the WENO9 scheme uses the least

number of register, but has the highest occupancy. This

convinces us to limit the number of registers in the

compiler options and reduce the amount of shared

memory by reducing the number of threads per block.

Figure 6 WENO kernels runtimes for a single call for both the

GPUs.

Figure 7 shows the results as those of Figure 6 after

limiting the number of registers to 63 and reducing the

number of threads per block from 256 to 128. Note that

using only one of these two modification does not

considerably affect the occupancy. The figure shows the

occupancies on the first GPU for the WENO3, WENO5

and WENO7 increases and equals to that of the WENO9

scheme and therefore the runtimes decreases for the

mentioned schemes. However, since for the first GPU the

amount of registers are already limited to 63 because of

hardware limitation (see table 1), no significant change

is observed for the kernels on this GPU. Note that it is

possible to more limit the number of registers and obtain

more occupancy, however this means to lose the benefit

of the GPU fastest memory and therefore cause

performance decrease.

Table 3 shows the runtimes after the modifications

mentioned above. The table shows an approximate 2.2,

2.25, 2.35, 2.5 times faster execution runtimes are

obtained for the WENO3, WENO5, WENO7 and

WENO9, respectively. Note that, since 5/16 of the nodes

are assigned the second GPU, one may roughly expect a

speed-up of 3.2 (=16/5). However, due to data transfer a

bit less speed-ups are obtained.

6. Conclusions

Using OpenMP library, we were able to modify a single-

GPU code to a double-GPU one with a little effort. The

code was used to accelerate third- to ninth-order WENO

schemes. The main issue was the data transfer for the

points near the common boundary of the sub-domains

between the two GPUs. This was carried out by defining

halo points for numerical grids and by using CUDA

built-cN htNicchN “ith M oilyP l”. Furthermore, the

halo node values of all the four conservative variables are

copied to a buffer to reduce the time for data transfer

between GPUs. Another issue was the implementation of

boundary conditions, which was simply accomplished by

an if-statement in the code. Due to different GPU

specifications, the numerical grid was decomposed into

two unequal grids. Using CUDA profiler, we were able

to detect that the number of registers and the amount of

shared memory caused WENO7 scheme low

performance. By limiting the number of registers per

thread and reducing the number of threads per block, the

occupancy of WENO3, WENO5 and WENO7 kernels

increased and reached to that of the WENO9 kernel. This

indicated that for heterogeneous GPUs, an optimized

code for a specific GPU might not be optimum for other

GPUs and the performance improvement had to be done

simultaneously for all the GPUs. The results also

indicated, speed-ups of about 2.25 with respect to the

single-GPU runs were obtained which were acceptable

considering that the ideal speed-up is 3.2 and data

transfer is a slow process.

Vol. 48, No. 2, December 2017

169

7. Acknowledgments

The author would like to acknowledge the financial

support of University of Tehran and Iran's National Elites

Foundation for this research under grant number

01/1/28745.

Figure 7 WENO kernels runtimes for a single call for both the GPUs after limiting the number of registers and reducing the

amount of shared memory by reducing the number of threads per block from 256 to 128

Table 3: Comparison of Single- and Double-GPU runtimes after limiting the number of registers and reducing the amount of shared

memory by reducing the number of threads per block from 256 to 128.

Grid Single-GPU

time

Double-GPU

time

speed-up Single-GPU

time

Double-GPU

time

speed-up

 WENO3 WENO5

256×256 7.98 4.13 1.93 10.01 4.92 2.03

512×512 28.95 13.37 2.17 37.68 16.23 2.32

1024×1024 114.98 47.94 2.40 150.62 58.95 2.56

 WENO7 WENO9

256×256 11.52 5.61 2.05 13.75 6.20 2.2

512×512 43.91 19.47 2.26 52.69 20.87 2.52

1024×1024 175.85 71.54 2.46 211.27 77.65 2.72

Hossein Mahmoodi Darian

170

8. References

[1] H. P. Le, J. L. Cambier, L. K. Cole, GPU-based

flow simulation with detailed chemical kinetics,

Computer Physics Communications, Vol. 184,

No. 3, pp. 596-606, 2013.

[2] A. Khajeh-Saeed, J. Blair Perot, Direct

numerical simulation of turbulence using GPU

accelerated supercomputers, Journal of

Computational Physics, Vol. 235, pp. 241-257,

2013.

[3] B. Tutkun, F. O. Edis, A GPU application for

high-order compact finite difference scheme,

Computers and Fluids, Vol. 55, pp. 29-35,

2012.

[4] J. A. Ekaterinaris, High-order accurate, low

numerical diffusion methods for aerodynamics,

Progress in Aerospace Sciences, Vol. 41, No. 3-

4, pp. 192-300, 2005.

[5] G. S. Jiang, C. W. Shu, Efficient

implementation of weighted ENO schemes,

Journal of Computational Physics, Vol. 126,

No. 1, pp. 202-228, 1996.

[6] X. D. Liu, S. Osher, T. Chan, Weighted

Essentially Non-oscillatory Schemes, Journal

of Computational Physics, Vol. 115, No. 1, pp.

200-212, 1994.

[7] V. Esfahanian, K. Hejranfar, H. M. Darian,

Implementation of high-order compact finite-

difference method to parabolized Navier-Stokes

schemes, International Journal for Numerical

Methods in Fluids, Vol. 58, No. 6, pp. 659-685,

2008.

[8] K. Heiranfar, V. Esfahanian, H. M. Darian, On

the use of high-order accurate solutions of PNS

schemes as basic flows for stability analysis of

hypersonic axisymmetric flows, Journal of

Fluids Engineering, Transactions of the ASME,

Vol. 129, No. 10, pp. 1328-1338, 2007.

[9] S. K. Lele, Compact finite difference schemes

with spectral-like resolution, Journal of

Computational Physics, Vol. 103, No. 1, pp. 16-

42, 1992.

[10] H. Mahmoodi Darian, V. Esfahanian, K.

Hejranfar, A shock-detecting sensor for

filtering of high-order compact finite difference

schemes, Journal of Computational Physics,

Vol. 230, No. 3, pp. 494-514, 2011.

[11] A. S. Antoniou, K. I. Karantasis, E. D.

Polychronopoulos, J. A. Ekaterinaris,

Acceleration of a finite-difference WENO

scheme for large-scale simulations on many-

core architectures, in Proceeding of.

[12] V. Esfahanian, H. M. Darian, S. M. Iman

Gohari, Assessment of WENO schemes for

numerical simulation of some hyperbolic

equations using GPU, Computers and Fluids,

Vol. 80, No. 1, pp. 260-268, 2013.

[13] H. M. Darian, V. Esfahanian, Assessment of

WENO schemes for multi-dimensional Euler

equations using GPU, International Journal for

Numerical Methods in Fluids, Vol. 76, No. 12,

pp. 961-981, 2014.

[14] S. C. Lo, G. A. Blaisdell, A. S. Lyrintzis, High-

order shock capturing schemes for turbulence

calculations, International Journal for

Numerical Methods in Fluids, Vol. 62, No. 5,

pp. 473-498, 2010.

[15] H. C. Yee, N. D. Sandham, M. J. Djomehri,

Low-Dissipative High-Order Shock-Capturing

Methods Using Characteristic-Based Filters,

Journal of Computational Physics, Vol. 150,

No. 1, pp. 199-238, 1999.

[16] M. Khoshab, A. A. Dehghan, V. Esfahanian, H.

M. Darian, Numerical assessment of a shock-

detecting sensor for low dissipative high-order

simulation of shock-vortex interactions,

International Journal for Numerical Methods in

Fluids, Vol. 77, No. 1, pp. 18-42, 2015.

[17] N. Corporation, 2010, NVIDIA CUDA C

Programming Guide,

