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Abstract

In this paper, we use two statistics for detecting outliers in exponentiated Pareto
distribution. These statistics are the extension of the statistics for detecting outliers in
exponential and gamma distributions. In fact, we compare the power of our test statistics
based on the simulation study and identify the better test statistic for detecting outliers in
exponentiated Pareto distribution. At the end, we describe an example from insurance

company.
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Introduction

The Pareto distribution was originally used to
describe the allocation of wealth among individuals,
since it seemed to show rather well the way that a larger
portion of the wealth of any society is owned by a
smaller percentage of the people in that society. It can
be shown that from a probability density function, graph
of the population f(x), the probability or fraction of
f(x) that own a small amount of wealth per person, is
high. The probability then decreases steadily as wealth
increases. Also, the Pareto distribution is useful for
finding the average of annuity and benefit for an
insurance problem. In economics, where this
distribution is used as an income distribution, the
threshold parameter is some minimum income with a
known value. Dixit and Jabbari Nooghabi [4] compared
the uniformly minimum variance unbiased estimator
(UMVUE) of the probability density function (pdf), the
distribution function (CDF) and the " moment for the
Pareto distribution.

Now, if we assume that Y is a Pareto distributed
random variable, then we take X =In (Y) to have the
corresponding exponentiated Pareto distribution as

defined by Nadarajah [14]. Usually, Y is defined on the
positive side of the real line and so one would hope that
models on the basis of the distribution of X would have
greater applicability. Nadarajah [14] introduced five
exponentiated Pareto distributions and derived several
of their properties including the moment generating
function, expectation, variance, skewness, kurtosis,
Shannon entropy, and the Rényi entropy. Note that
another type of exponentiated Pareto distribution was
considered by Shawky and Abu-Zinadah [15] and
characterized using record values. Shawky and Abu-
Zinadah [16] derived the maximum likelihood
estimation of the different parameters of an
exponentiated Pareto distribution. Also, they considered
five other estimation procedures and compared them.
Afify [2] obtained Bayes and classical estimators for a
two parameter exponentiated Pareto distribution for
when samples are available from complete, type I and
type II censoring schemes. He proposed Bayes
estimators under a squared error loss function as well as
under a LINEX loss function using priors of non-
informative type for the parameters.

Mahmoud [13] proposed the best linear unbiased
estimates and the maximum likelihood estimates of the
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location and scale parameters from the Exponentiated
Pareto distribution based on progressively Type-II right
censored order statistics.

However, in this paper we will restrict to the form
defined by Nadarajah [14].

The generalized Chauvenet’s test for rejecting outlier
observations is suitable for detecting k outliers in a
univariate data set. This test can be used for exponential
case. Several authors considered the problem for testing
one outlier in exponential distribution. Only two types
of statistics for testing multiple outliers exist. First is
Dixon’s while the second is based on the ratio of some
observations suspected to be outliers with respect to the
sum of all observations in the sample. In fact, most of
these authors have used a general case of gamma model
and then the results for exponential model are given as a
special case. This approach is focused on alternative
models, namely slippage alternatives in exponential
samples (see Barnett and Lewis [3]). Barnett and Lewis
[3] gave a survey of literature in the connection. Kale
[8] investigated the problem of identifying the outliers
for one parameter exponential family. Zerbet and
Nikulin [17] proposed a different statistic from the well-
known Dixon’s statistic, Dy, to test multiple outliers.
Hadi et al. [6] presented an overview of the major
developments in the area of detection of outliers. These
include projection pursuit approaches as well as
Mahalanobis distance-based procedures. Also, they
discussed other methods, corresponding to the large
datasets. Jabbari Nooghabi et. al. [7] and Kumar and
Lalitha [11] extended the Zerbet and Nikulin [17]
statistic for gamma distribution and showed that Z;
statistic is more powerful than Dixon’s. Kumar [10]
discussed an approach for testing multiple upper outliers
with slippage alternative in an exponential sample
irrespective of origin. The test statistic is based on a
ratio of two estimates, obtained by the maximization of
the two log-likelihood functions. He derived the exact
null distribution of the test statistic. Kornacki [9]
proposed an alternative method of outlier detection
based on the Akaike information criterion. Lin and
Balakrishnan [12] proposed an algorithm for evaluating
the null joint distribution of Dixon-type test statistics for
testing discordancy of k upper outliers in exponential
samples. Gogoi and Das [5] compared the empirical
powers of some statistics for detecting multiple upper
outliers in exponential samples under slippage
alternative. The results show that the maximum
likelihood ratio test statistic is better than the other
statistics followed by Dixon type test statistics to deal
with upper outliers in exponential samples. Adil and
Irshad [1] modified the Tukey’s boxplot for detection of
outliers when the data are skewed and proposed
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approach to detect outliers properly.

In this paper, we use two statistics Z; and D; for
detecting outliers in exponentiated Pareto distribution.
The distribution of the test based on these statistics
under slippage alternatives is obtained and the tables of
critical values are given for various n (the sample size)
and k (the number of outliers). The power of these tests
are also calculated and compared. In the next section,
we introduce the test statistics. In Sections 3 and 4, we
obtain the distribution of the statistics. Section 5 used to
compare the critical values and the powers. In the last
section, we describe an example from an insurance
company.

Statistical Inference

Let X;,X,,...,X, be arbitrary independent random
variables. In this paper, we test the following
hypothesis:

Hy:X1,X5,...,X, are iid random variables from
exponentiated Pareto distribution with parameters a and
0 (a is unknown and 6 is known).

Therefore, the probability density function of these
samples under the null hypothesis is:

fx(xa,0)=ab% . x=In(6)>0,a>0

But under the slippage alternative, H,,, we have

X(I)JX(Z)' . 'JX(n—k) derive from fx(x; a, 9),

Xn-k+1) X(n-k+2)s--» X(ny derive from fy (x; ap, 6),

where > 1, B is unknown and X(1), X2y, .-, X(n)
denote the order statistics corresponding to the
observations X;,X,,...X,. We suppose that the
hypothesis be an important sub-hypothesis of the one
saying that k of n observations are suspected to be
outliers (for f > 1, these k observations are called
upper outliers). So, Hy is correspond to § = 1.

To test Hy, we use these statistics

Z, = K- — X '
Licn-ir1(XG) = X))

(1

and
_ Xy —In(6) @
Xaoy—In(6)
Following the idea of the Chauvenet’s test, we
assume that the decision criterion is:
H, is rejected when Z, > c; or D, > ¢y,

Dk=

where ¢; = ¢;(@;) and ¢, = c,(@,) are the critical
value corresponding to the significance level a; for Z,,
and D, statistics, respectively.

The Distribution of Z;, Under Alternatives
In this section, we find the distribution of the statistic
Zy, according to Zerbet and Nikulin [17] method. Then,
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the distribution of this statistic under the slippage
alternative hypothesis Hj, is obtained by the following
Theorem.

Theorem 1. The distribution of the statistic Z, under
Hy is
Pu{Z) < z|Hy}

_Brkp+n—k) (=prk
T T+ ;F(j—1)F(n—j—k+1)(k[)’+n—k—j+1)

x{ﬁ‘k

—[p+ B +n—k—j 3)
_k 1

+ D] } 0<z<2

Proof. To proof see Zerbet and Nikulin [17] or
Jabbari Nooghabi et. al. [7] and and Kumar and Lalitha
[11].

Corollary 1. The distribution of Z, under H, is
obtained from Theorem 1 by taking § = 1.

The Distribution of D, Under Alternatives

In this section, the following Theorem is used to find
the distribution of D, under alternatives.

Theorem 2. The distribution of D, under Hj, is as
follows:
Pi{Dy < x|Hi}

_Prkf+n—k+1) (=1t
ST T+ ZZ(n k=D'G=DIk=DIG—-1)!

1
X -
kf+n—k—j+1

[(Bk—i+1D) - Bk-i+1)

1
+(;—1)(kﬁ+n—k—j+1))‘1], 0<x<1. 4)

Proof. Same as the Theorem 1, we set
7.1_-{‘ Y P
?:n—k+1 Y] Q
The characteristic function of (P, Q) is
bpo(t,s) = E(e'P+e9)

_ j RIS ) IR
g:{n

X forpvot) V1 V2 - Yn)dY1dY,. .. dYy. (6)

Then according to distribution of ¥;, j = 1,2,...,n —

k and Yok+jr J = 1,2,...,k, we have

¢PQ(t s)

—yj ——lt
aj dy
L[5
“Yn-k+j F_w)
X 1_[ Fe J dYn—k+j
; 0o =
j=1

o) G
—|—=i —(—==is| .
j=1 U\ j=1 0 \Dj

So, the joint density function of (P, Q) is

f(PQ)(P»Q) 2n )zf lna _—lt> e~itr| 4t
j
+eo 1/1 -
—|—- -isq | gs. 7
xjo nbj (bj lS) e S (7

j=1
Same as Zerbet and Nikulin [17], we obtain these
products
n—k
1
1
=g T it
nei ®)
z (_1)n—k+j
= (it - l) G —2)! (n—k — j)l ank
4;
n—k
1—[1 _I"(kﬁ+n—k+1)a”‘k )
O 7 ) I
Jj=
and
k
1
1_[1 —is
Jj=1 b;
(10)

N (=D*
=Z<i 1

s =) U =2t k=l (@p)

Therefore
f(P,Q)(p’ ) .
_al(kB+n—k+1) z (—pr o= a(kB+n—k—j+1)p
I"(kﬁ+1) G-D!n—k-!

xaﬂk'z = 1)k+L e=aBk=i+a, 4,
(k=D!@-1n! ' 11
>0,g>0.

So, the density and distribution function of R, are
fr (1)
_Brkp+n—k+1) (~1)"™H[B(k — i + 1) + (kB +n — k — j + 1)] 2
T TMB T ZZ (—k-DIG-DIk-DIG- 1) '

(12)

=1 i=1
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and
P {R, <71}

_Brkp+n—k+1)

(_1)n+i+j
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“KBtn—k—j+1

n—k k
;;(n—k—j)!

+r(kB+n—k—j+ 1)1, r>o0.

(13)

G-DIk=DIi-1)!
[(Ble—i+1D) = (Bk—i+1)
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With substituting R = % — 1, the proof is complete.

Corollary 2. The distribution of D, under H, is
obtained from Theorem 2 by taking f = 1.

Results

A Simulation Example
In this section, we give the critical values of statistics
Zy and Dy, for the levels of significance a; = 0.05 and

Table 1. Critical values of Z, for «; = 0.05 and a; = 0.1

k
n 1 2 3 4 5 6 7 8 9 10
5 095438 0.39434 0.18751 - - - - - - -
0.90981 0.35284 0.15470 - - - - - - -
6 096130 0.41440 0.22380 - - - - - - -
0.92308 0.37940 0.19632 - - - - - - -
7 096562 0.42604 0.24199 0.14622 - - - - - -
0.93148 0.39508 0.21788  0.12683 - - - - - -
8 096866 0.43375 0.25326 0.16164 - - - - - -
0.93735 0.40558 0.23145 0.14416 - - - - - -
9 097086 0.43928 0.26101 0.17163 0.11669 - -- - -- -
0.94170 0.41318 0.24089  0.15555 0.10343 - -- - -- -
10 0.97262 0.44348 0.26672 0.17872 0.12540 - -- - -- -
0.94509 0.41897 0.24792  0.16376 0.11305 - -- - -- -
15 097766 0.45527 0.28212  0.19689 0.14632 0.11281 0.08880 0.07062 - -
0.95503 0.43539 0.26708  0.18502 0.13660 0.10457 0.08174 0.06438 - --
20 0.98022 0.46098 0.28933  0.20493 0.15513 0.12227 0.09899 0.08161 0.06808 0.05719
0.96009 0.44343 0.27608  0.19458 0.14666 0.11515 0.09289 0.07626 0.06331 0.05291
25 098182 0.46449 0.29359  0.20966 0.16013 0.12759 0.10456 0.08742 0.07415 0.06361
0.96326 0.44839 0.28151 0.20023 0.15245 0.12116 0.09903 0.08260 0.06987 0.05978
30 0.98294 0.46691 0.29654  0.21283 0.16347 0.13105 0.10812 0.09112 0.07796 0.06754
0.96555 0.45183 0.26400  0.20403 0.15633 0.12509 0.10303 0.08667 0.07402 0.06404
Upper and lower values in each cell refer to @; = 0.05 and a; = 0.1, respectively.
Table 2. Critical values of D, for @; = 0.05 and a; = 0.1
k
n 1 2 3 4 5 6 7 8 9 10
5 0.78208 0.86148 0.87817 -- - - - - - -
0.71366 0.80173 0.76693 -- - - - - - -
6 0.74585 0.81986 0.82261 -- - - - - - -
0.67517 0.75459 0.69865 -- - - - - - -
7 0.71730 0.78668 0.77956 0.85710 - - - - - -
0.64537 0.71814 0.64927 0.85709 - - - - - -
8 0.69403 0.75961 0.74518 0.83328 - - - - - -
0.62143 0.68892 0.61147 0.80006 - - - - - -
9 0.67467 0.73700 0.71701 0.79997  0.87497 -- -- - - -
0.60165 0.66489 0.58145 0.77781 0.85711 -- -- - - -
10 0.65818 0.71778 0.69337 0.77774 0.85707 - -- - - -
0.58495 0.64467 0.55689 0.75003  0.83328 -- -- - - -
15 0.60137 0.65176 0.61466 0.76831 0.81815 0.81824 0.83327 0.84612 - -
0.52828 0.57662 0.47831 0.73966  0.74998 0.75004 0.76928 0.78577 - -
20 0.56667 0.61169 0.56847 0.62497 0.63641 0.64284 0.68747 0.71433 0.73338 0.76475
0.49425 0.53625 0.43439 0.57599  0.59998 0.60489 0.61536 0.64288 0.66663 0.68748
25 0.54244 0.58384 0.53706 0.59997 0.61537 0.61536 0.64704 0.68746 0.68923 0.70591
0.47076 0.50861 0.40532 0.55553 0.56070 0.57145 0.60002 0.60960 0.61113 0.65003
30 0.52417 0.56289 0.51382 0.59997 0.60302 0.61141 0.61723 0.62497 0.64998 0.68419
0.45318 0.48798 0.38431 0.51235 0.54544 0.55178 0.56252 0.57145 0.58821 0.64998
Unner and lower values in each cell are corresnond to a. = 0.05 and a. = 0.1. resnectivelv.
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a, =0.1, for k=1,2,3,... such that k <n/2, and
n = 5(1)10(5)30 in Tables 1 and 2, respectively.

The powers of Z, and D, statistics are compared in
Figure 1 for a; = 0.05 and 0.1, k = 1,2,3 and sample
size n = 10,20 respect to 3.

Computing the power of the tests and critical values
are achieved using R software.

Figure 1 shows that for ¢; = 0.05 and @; = 0.1, the
test based on Z;, is more powerful than the test based on
D, in all values of n, k and £3.

An Actual Example

In an insurance company one of services is motor
insurance. A claim can be made of at least 500,000
Rials as compensation for the motor insurance. So, the
threshold of the distribution of claim is 500,000 Rials.
The vehicles involved are of different cost of which
some of them may be very expensive. Claim amounts
varies according to the damage occurred to the vehicles.

o | w2 |-= 7 aIpha1=0.05
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Figure 1. The variation of powers with respect to £.

Power

Power

Power

It has been observed that claims of these vehicles
(expensive/severe damaged vehicle) are several times
higher than normal vehicles. In this paper, we have
drawn a random sample of size 20 of the claim amounts.
It is observed that such claims follow a Pareto
distribution in the presence of outliers. Here, the number
of outliers (k) is unknown.

The data of claims from the insurance company of
Iran records for the year 2008 is given bellow:

750000, 780000, 630000, 1750000, 1450000

3000000, 8650000, 4210000, 890000, 950000

1240000, 1800000, 1630000, 9010000, 4750000

3250000, 1135000, 1326000, 1280000, 760000.

To convert the data to exponentiated Pareto
distribution, at first we use the natural logarithm
transformation. So, the converted data follow an
exponentiated Pareto distribution. Therefore, the values
of Z statistic are 0.98467, 0.38261, 0.26020, 0.17834,
0.14397, 0.08466, 0.07595, 0.06568, 0.05405 and
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Figure 2. Values of Z statistic respect to k for actual example.

0.04578 for k=1:10, respectively. Comparing these
values with critical values in Table 1. corresponding to
n =20, shows that the number of outlier is k =1 and
9010000 is its value for a;=0.05 or 0.1. Figure 2 shows
values of Z statistic respect to k and it is decreased
when k is increasing.
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