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Abstract 

In this paper, we use two statistics for detecting outliers in exponentiated Pareto 
distribution. These statistics are the extension of the statistics for detecting outliers in 
exponential and gamma distributions. In fact, we compare the power of our test statistics 
based on the simulation study and identify the better test statistic for detecting outliers in 
exponentiated Pareto distribution. At the end, we describe an example from insurance 
company.   
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Introduction 
The Pareto distribution was originally used to 

describe the allocation of wealth among individuals, 
since it seemed to show rather well the way that a larger 
portion of the wealth of any society is owned by a 
smaller percentage of the people in that society. It can 
be shown that from a probability density function, graph 
of the population ݂(ݔ), the probability or fraction of ݂(ݔ) that own a small amount of wealth per person, is 
high. The probability then decreases steadily as wealth 
increases. Also, the Pareto distribution is useful for 
finding the average of annuity and benefit for an 
insurance problem. In economics, where this 
distribution is used as an income distribution, the 
threshold parameter is some minimum income with a 
known value. Dixit and Jabbari Nooghabi [4] compared 
the uniformly minimum variance unbiased estimator 
(UMVUE) of the probability density function (pdf), the 
distribution function (CDF) and the ݎ௧௛ moment for the 
Pareto distribution. 

Now, if we assume that ܻ is a Pareto distributed 
random variable, then we take ܺ = ln ( ܻ) to have the 
corresponding exponentiated Pareto distribution as 

defined by Nadarajah [14]. Usually, ܻ is defined on the 
positive side of the real line and so one would hope that 
models on the basis of the distribution of ܺ would have 
greater applicability. Nadarajah [14] introduced five 
exponentiated Pareto distributions and derived several 
of their properties including the moment generating 
function, expectation, variance, skewness, kurtosis, 
Shannon entropy, and the Rényi entropy. Note that 
another type of exponentiated Pareto distribution was 
considered by Shawky and Abu-Zinadah [15] and 
characterized using record values. Shawky and Abu-
Zinadah [16] derived the maximum likelihood 
estimation of the different parameters of an 
exponentiated Pareto distribution. Also, they considered 
five other estimation procedures and compared them. 
Afify [2] obtained Bayes and classical estimators for a 
two parameter exponentiated Pareto distribution for 
when samples are available from complete, type I and 
type II censoring schemes. He proposed Bayes 
estimators under a squared error loss function as well as 
under a LINEX loss function using priors of non-
informative type for the parameters. 

Mahmoud [13] proposed the best linear unbiased 
estimates and the maximum likelihood estimates of the 
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location and scale parameters from the Exponentiated 
Pareto distribution based on progressively Type-II right 
censored order statistics. 

However, in this paper we will restrict to the form 
defined by Nadarajah [14].  

The generalized Chauvenet’s test for rejecting outlier 
observations is suitable for detecting ݇ outliers in a 
univariate data set. This test can be used for exponential 
case. Several authors considered the problem for testing 
one outlier in exponential distribution. Only two types 
of statistics for testing multiple outliers exist. First is 
Dixon’s while the second is based on the ratio of some 
observations suspected to be outliers with respect to the 
sum of all observations in the sample. In fact, most of 
these authors have used a general case of gamma model 
and then the results for exponential model are given as a 
special case. This approach is focused on alternative 
models, namely slippage alternatives in exponential 
samples (see Barnett and Lewis [3]). Barnett and Lewis 
[3] gave a survey of literature in the connection. Kale 
[8] investigated the problem of identifying the outliers 
for one parameter exponential family. Zerbet and 
Nikulin [17] proposed a different statistic from the well-
known Dixon’s statistic, ܦ௞, to test multiple outliers. 
Hadi et al. [6] presented an overview of the major 
developments in the area of detection of outliers. These 
include projection pursuit approaches as well as 
Mahalanobis distance-based procedures. Also, they 
discussed other methods, corresponding to the large 
datasets. Jabbari Nooghabi et. al. [7] and Kumar and 
Lalitha [11] extended the Zerbet and Nikulin [17] 
statistic for gamma distribution and showed that ܼ௞ 
statistic is more powerful than Dixon’s. Kumar [10] 
discussed an approach for testing multiple upper outliers 
with slippage alternative in an exponential sample 
irrespective of origin. The test statistic is based on a 
ratio of two estimates, obtained by the maximization of 
the two log-likelihood functions. He derived the exact 
null distribution of the test statistic. Kornacki [9] 
proposed an alternative method of outlier detection 
based on the Akaike information criterion. Lin and 
Balakrishnan [12] proposed an algorithm for evaluating 
the null joint distribution of Dixon-type test statistics for 
testing discordancy of ݇ upper outliers in exponential 
samples. Gogoi and Das [5] compared the empirical 
powers of some statistics for detecting multiple upper 
outliers in exponential samples under slippage 
alternative. The results show that the maximum 
likelihood ratio test statistic is better than the other 
statistics followed by Dixon type test statistics to deal 
with upper outliers in exponential samples. Adil and 
Irshad [1] modified the Tukey’s boxplot for detection of 
outliers when the data are skewed and proposed 

approach to detect outliers properly. 
In this paper, we use two statistics ܼ௞ and ܦ௞ for 

detecting outliers in exponentiated Pareto distribution. 
The distribution of the test based on these statistics 
under slippage alternatives is obtained and the tables of 
critical values are given for various ݊ (the sample size) 
and ݇ (the number of outliers). The power of these tests 
are also calculated and compared. In the next section, 
we introduce the test statistics. In Sections 3 and 4, we 
obtain the distribution of the statistics. Section 5 used to 
compare the critical values and the powers. In the last 
section, we describe an example from an insurance 
company.  

 
Statistical Inference 

Let ଵܺ, ܺଶ, . . . , ܺ௡ be arbitrary independent random 
variables. In this paper, we test the following 
hypothesis:  ܪ଴: ଵܺ, ܺଶ, . . . , ܺ௡ are iid random variables from 
exponentiated Pareto distribution with parameters ߙ and ߠ (ߙ is unknown and ߠ is known).  

Therefore, the probability density function of these 
samples under the null hypothesis is:  ௑݂(ݔ; ,ߙ (ߠ = .ఈ݁ିఈ௫ߠߙ ݔ      ≥ ln ( (ߠ > 0, ߙ  > 0 

But under the slippage alternative, ܪ௞, we have  ܺ(ଵ), ܺ(ଶ), . . . , ܺ(௡ି௞) derive from ௑݂(ݔ; ,ߙ ,(௡ି௞ାଵ)ܺ  ,(ߠ ܺ(௡ି௞ାଶ), . . . , ܺ(௡) derive from ௑݂(ݔ; ,ߚߙ   ,(ߠ
where ߚ > ,is unknown and ܺ(ଵ) ߚ ,1 ܺ(ଶ), . . . , ܺ(௡) 

denote the order statistics corresponding to the 
observations ଵܺ, ܺଶ, . . . ܺ௡. We suppose that the 
hypothesis be an important sub-hypothesis of the one 
saying that ݇ of ݊ observations are suspected to be 
outliers (for ߚ > 1, these ݇ observations are called 
upper outliers). So, ܪ଴ is correspond to ߚ = 1.  

To test ܪ଴, we use these statistics  

 ܼ௞ = ܺ(௡ି௞) − ܺ(ଵ)∑ (௡௝ୀ௡ି௞ାଵ ܺ(௝) − ܺ(ଵ)), (1) 

 
and  

௞ܦ  = 1 − ܺ(௡ି௞) − ln( (௡)ܺ(ߠ − ln ( (ߠ . (2) 

Following the idea of the Chauvenet’s test, we 
assume that the decision criterion is:  ܪ଴  ݅ݓ  ݀݁ݐ݆ܿ݁݁ݎ  ݏℎ݁݊  ܼ௞ > ܿଵ  ܦ  ݎ݋௞ > ܿଶ, 

 
where ܿଵ = ܿଵ(ߙଵ) and ܿଶ = ܿଶ(ߙଵ) are the critical 

value corresponding to the significance level ߙଵ for ܼ௞ 
and ܦ௞ statistics, respectively.  

 
The Distribution of ࢑ࢆ Under Alternatives 

In this section, we find the distribution of the statistic ܼ௞ according to Zerbet and Nikulin [17] method. Then, 
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the distribution of this statistic under the slippage 
alternative hypothesis ܪ௞ is obtained by the following 
Theorem.  

Theorem 1. The distribution of the statistic ܼ௞ under ܪ௞ is  ௞ܲ{ܼ௞ < ={௞ܪ|ݖ ߚ݇)߁௞ߚ + ݊ − ߚ݇)߁(݇ + 1) ෍ (−1)௡ା௝ି௞߁(݆ − ݊)߁(1 − ݆ − ݇ + ߚ݇)(1 + ݊ − ݇ − ݆ + 1)௡ି௞
௝ୀଶ  

 

 

× ൜ିߚ௞− ቂߚ + ߚ݇) + ݊ − ݇ − ݆+ 1) 1ݖ − ቃି௞ൠݖ݇ ,   0 < ݖ < 1݇. (3) 

 
Proof. To proof see Zerbet and Nikulin [17] or 

Jabbari Nooghabi et. al. [7] and and Kumar and Lalitha 
[11].  

Corollary 1. The distribution of ܼ௞ under ܪ଴ is 
obtained from Theorem 1 by taking ߚ = 1.  

 
The Distribution of ۲ܓ Under Alternatives 
In this section, the following Theorem is used to find 

the distribution of ܦ௞ under alternatives.  
Theorem 2. The distribution of ܦ௞ under ܪ௞ is as 

follows:  ௞ܲ{ܦ௞ < ={௞ܪ|ݔ ߚ݇)߁ߚ + ݊ − ݇ + ߚ݇)߁(1 + 1) ෍ ෍ (−1)௡ା௜ା௝(݊ − ݇ − ݆)! (݆ − 1)! (݇ − ݅)! (݅ − 1)!௞
௜ୀଵ

௡ି௞
௝ୀଵ  

× ߚ1݇ + ݊ − ݇ − ݆ + 1 ݇)ߚ)] − ݅ + 1))ିଵ − ݇)ߚ) − ݅ + 1) 

 + ൬1ݔ − 1൰ ߚ݇) + ݊ − ݇ − ݆ + 1))ିଵ],    0 < ݔ < 1. (4) 
 
Proof. Same as the Theorem 1, we set  

 ܴ௞ = ∑ ௝ܻ௡ି௞௝ୀଵ∑ ௝ܻ௡௝ୀ௡ି௞ାଵ = ܲܳ. (5) 

The characteristic function of (ܲ, ܳ) is  ߶௉,ொ(ݐ, (ݏ = = ൫݁௜(௉௧ାொ௦)൯ࡱ න ݁௜(∑ ௬ೕ೙షೖೕసభ ௧ା∑ ௬ೕ೙ೕస೙షೖశభ ௦)ℜ೙  

 × (݂௒భ,௒మ,...,௒೙)(ݕଵ, ,ଶݕ . . . , .ଶݕଵ݀ݕ݀(௡ݕ . .  ௡. (6)ݕ݀
 
Then according to distribution of ௝ܻ ,  ݆ = 1,2, . . . , ݊ −݇ and ௡ܻି௞ା௝,  ݆ = 1,2, . . . , ݇, we have  

߶௉,ொ(ݐ, =(ݏ ෑ ൥න 1ܽ௝
ஶ

଴ ݁ି௬ೕቆ ଵ௔ೕି௜௧ቇ݀ݕ௝൩௡ି௞
௝ୀଵ× ෑ ൥න 1ܾ௝

ஶ
଴ ݁ି௬೙షೖశೕቆ ଵ௕ೕି௜௦ቇ݀ݕ௡ି௞ା௝൩௞

௝ୀଵ  

ෑ 1ܽ௝ ቆ 1ܽ௝ − ቇିଵ௡ି௞ݐ݅
௝ୀଵ × ෑ 1ܾ௝ ቆ 1ܾ௝ − ቇିଵ௞ݏ݅

௝ୀଵ . 
So, the joint density function of (ܲ, ܳ) is  

(݂௉,ொ)(݌, (ݍ = ଶ(ߨ2)1 න ቎ෑ 1ܽ௝
௡ି௞
௝ୀଵ ቆ 1ܽ௝ − ቇିଵݐ݅ ݁ି௜௧௣቏ ାஶݐ݀

଴  

 × න ቎ෑ 1ܾ௝
௞

௝ୀଵ ቆ 1ܾ௝ − ቇିଵݏ݅ ݁ି௜௦௤቏ାஶ
଴  (7) .ݏ݀

Same as Zerbet and Nikulin [17], we obtain these 
products  ෑ 11ܽ௝ − ௡ି௞ݐ݅

௝ୀଵ
= ෍ (−1)௡ି௞ା௝൬݅ݐ − 1ܽ௝൰ (݆ − 2)! (݊ − ݇ − ݆)! ௡ି௞ߙ

௡ି௞
௝ୀଵ , (8) 

 

 ෑ 1ܽ௝
௡ି௞
௝ୀଵ = ߚ݇)߁ + ݊ − ݇ + ߚ݇)߁௡ି௞ߙ(1 + 1) , (9) 

and  ෑ 11ܾ௝ − ௞ݏ݅
௝ୀଵ= ෍ (−1)௞ା௝൬݅ݏ − 1ܾ௝൰ (݆ − 2)! (݇ − ݆)! ௞ିଵ(ߚߙ)

௞
௝ୀଵ . (10) 

 
Therefore (݂௉,ொ)(݌, =(ݍ ߚ݇)߁ߙ + ݊ − ݇ + ߚ݇)߁(1 + 1) ෍ (−1)௡ି௞ା௝(݆ − 1)! (݊ − ݇ − ݆)!௡ି௞

௝ୀଵ ݁ିఈ(௞ఉା௡ି௞ି௝ାଵ)௣ 

× !݇ߚߙ ෍ (−1)௞ା௜(݇ − ݅)! (݅ − 1)!௞
௜ୀଵ ݁ିఈఉ(௞ି௜ାଵ)௤, <݌    0, ݍ > 0. (11) 

 
So, the density and distribution function of ܴ௞ are  

ோ݂ೖ(ݎ)= ߚ݇)߁ߚ + ݊ − ݇ + ߚ݇)߁(1 + 1) ෍ ෍ (−1)௡ା௝ା௜[ߚ(݇ − ݅ + 1) + ߚ݇)ݎ + ݊ − ݇ − ݆ + 1)]ିଶ(݊ − ݇ − ݆)! (݆ − 1)! (݇ − ݅)! (݅ − 1)!௞
௜ୀଵ

௡ି௞
௝ୀଵ ,

(12) 
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and  ௞ܲ{ܴ௞ < ={ݎ ߚ݇)߁ߚ + ݊ − ݇ + ߚ݇)߁(1 + 1) ෍ ෍ (−1)௡ା௜ା௝(݊ − ݇ − ݆)! (݆ − 1)! (݇ − ݅)! (݅ − 1)!௞
௜ୀଵ

௡ି௞
௝ୀଵ  

× ߚ1݇ + ݊ − ݇ − ݆ + 1 ݇)ߚ)] − ݅ + 1))ିଵ − ݇)ߚ) − ݅ + 1) 

ߚ݇)ݎ+  + ݊ − ݇ − ݆ + 1))ିଵ], ݎ    > 0. (13) 
 

With substituting ܴ = ଵ஽ − 1, the proof is complete.  
Corollary 2. The distribution of ܦ௞ under ܪ଴ is 

obtained from Theorem 2 by taking ߚ = 1.  
 

Results 
A Simulation Example 

In this section, we give the critical values of statistics ܼ௞ and ܦ௞ for the levels of significance ߙଵ = 0.05 and 

Table 1. Critical values of ܼ௞ for ߙଵ = 0.05 and ߙଵ = 0.1  
 10 9 8 7 6 5 4  3    2    1     ࢔ ࢑ 
5 0.95438 0.39434 0.18751  -- -- -- -- -- -- -- 
 0.90981 0.35284 0.15470  -- -- -- -- -- -- -- 
6 0.96130 0.41440 0.22380  -- -- -- -- -- -- -- 
 0.92308 0.37940 0.19632  -- -- -- -- -- -- -- 
7 0.96562 0.42604 0.24199  0.14622 -- -- -- -- -- -- 
 0.93148 0.39508 0.21788  0.12683 -- -- -- -- -- -- 
8 0.96866 0.43375 0.25326  0.16164 -- -- -- -- -- -- 
 0.93735 0.40558 0.23145  0.14416 -- -- -- -- -- -- 
9 0.97086 0.43928 0.26101  0.17163 0.11669 -- -- -- -- -- 
 0.94170 0.41318 0.24089  0.15555 0.10343 -- -- -- -- -- 
10 0.97262 0.44348 0.26672  0.17872 0.12540 -- -- -- -- -- 
 0.94509 0.41897 0.24792  0.16376 0.11305 -- -- -- -- -- 
15 0.97766 0.45527 0.28212  0.19689 0.14632 0.11281 0.08880 0.07062 -- -- 
 0.95503 0.43539 0.26708  0.18502 0.13660 0.10457 0.08174 0.06438 -- -- 
20 0.98022 0.46098 0.28933  0.20493 0.15513 0.12227 0.09899 0.08161 0.06808 0.05719 
 0.96009 0.44343 0.27608  0.19458 0.14666 0.11515 0.09289 0.07626 0.06331 0.05291 
25 0.98182 0.46449 0.29359  0.20966 0.16013 0.12759 0.10456 0.08742 0.07415 0.06361 
 0.96326 0.44839 0.28151  0.20023 0.15245 0.12116 0.09903 0.08260 0.06987 0.05978 
30 0.98294 0.46691 0.29654  0.21283 0.16347 0.13105 0.10812 0.09112 0.07796 0.06754 
 0.96555 0.45183 0.26400  0.20403 0.15633 0.12509 0.10303 0.08667 0.07402 0.06404 

Upper and lower values in each cell refer to ߙଵ = 0.05 and ߙଵ = 0.1, respectively.  
 

Table 2. Critical values of ܦ௞ for ߙଵ = 0.05 and ߙଵ = 0.1  
 10 9 8 7 6 5 4  3    2    1     ࢔ ࢑ 
5 0.78208 0.86148 0.87817  -- -- -- -- -- -- -- 
 0.71366 0.80173 0.76693  -- -- -- -- -- -- -- 
6 0.74585 0.81986 0.82261  -- -- -- -- -- -- -- 
 0.67517 0.75459 0.69865  -- -- -- -- -- -- -- 
7 0.71730 0.78668 0.77956  0.85710 -- -- -- -- -- -- 
 0.64537 0.71814 0.64927  0.85709 -- -- -- -- -- -- 
8 0.69403 0.75961 0.74518  0.83328 -- -- -- -- -- -- 
 0.62143 0.68892 0.61147  0.80006 -- -- -- -- -- -- 
9 0.67467 0.73700 0.71701  0.79997 0.87497 -- -- -- -- -- 
 0.60165 0.66489 0.58145  0.77781 0.85711 -- -- -- -- -- 
10 0.65818 0.71778 0.69337  0.77774 0.85707 -- -- -- -- -- 
 0.58495 0.64467 0.55689  0.75003 0.83328 -- -- -- -- -- 
15 0.60137 0.65176 0.61466  0.76831 0.81815 0.81824 0.83327 0.84612 -- -- 
 0.52828 0.57662 0.47831  0.73966 0.74998 0.75004 0.76928 0.78577 -- -- 
20 0.56667 0.61169 0.56847  0.62497 0.63641 0.64284 0.68747 0.71433 0.73338 0.76475 
 0.49425 0.53625 0.43439  0.57599 0.59998 0.60489 0.61536 0.64288 0.66663 0.68748 
25 0.54244 0.58384 0.53706  0.59997 0.61537 0.61536 0.64704 0.68746 0.68923 0.70591 
 0.47076 0.50861 0.40532  0.55553 0.56070 0.57145 0.60002 0.60960 0.61113 0.65003 
30 0.52417 0.56289 0.51382  0.59997 0.60302 0.61141 0.61723 0.62497 0.64998 0.68419 
 0.45318 0.48798 0.38431  0.51235 0.54544 0.55178 0.56252 0.57145 0.58821 0.64998 

Upper and lower values in each cell are correspond to ଵߙ = 0.05 and ଵߙ = 0.1, respectively.
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