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Abstract

Every year, hundreds of people all over the world lose their lives due to landslides. Landslide susceptibility map
describes the likelihood or possibility of new landslides occurring in an area, and therefore helping to reduce future
potential damages. The main purpose of this study is to provide landslide susceptibility map using logistic regression
model at Latyan watershed, north Iran. In the first stage, 208 Landslide locations were identified and mapped using
extensive field surveys. 75 % of these landslides were used for training and 25 % of them for validation of the model.
The mapped landslides were then georeferenced using ArcGIS 10 to provide the landslide inventory map. In the
second stage, maps of factors affecting the occurrence of landslides were prepared in ArcGIS 10. Finally in the last
stage, the relationships between these affecting factors and the landslide inventory map were calculated using
Logistic regression algorithm. The amount of pseudo R? (0.32) and AUC (0.85) shown the high efficiency of Logistic
regression model. According to the coefficients obtained by the model, lithology is the most important factor
affecting landslide occurrence (coefficient= +12.032). Most landslides (69%) are located within Ek Formation. The
results indicated that 7.56% of the basin is located in high susceptibility class and 2.88% in very high susceptibility
class.
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1. Introduction Preventing natural hazards such as landslide is
one of the best practices in watershed

Landslides are amongst the most damaging management  activities. Susceptibility map
natural hazards. Every year, hundreds of people provides a document that describes the
all over the world lose their lives due to likelihood or possibility of new landslides
landslides. This phenomenon also causes occurring in an area, and therefore, helping to
extensive damages to constructions and reduce future potential damages. Landslide
infrastructures as well as a thousand casualties susceptibility modeling (LSM) and analysis are
annually. In Iran, about 187 people have been performed through varieties of methods and
killed by landslides and some infrastructure techniques including artificial neural network
such as forest roads (3 km), railroads (6 km), models (Zare et al., 2013), support vector
main roads (252.67 km), and rural roads (46 machine models (Dou et al., 2015), bivariate
km) have been damaged in a period of 25 years models (Youssef et al., 2015), weights-of-
(between 1982 and 2007) (lranian Landslide evidence models (Regmi et al., 2014), fuzzy
Working Party 2007). The monetary losses due logic models (Pourghasemi et al., 2012c),
to mass movements have been estimated to be Dempster—Shafer model (Pourghasemi et al.,
126,893 billion Iranian Rials until the end of 2013Db), frequency ratio model (Jafari et al.,
September 2007 (Pourghasemi et al., 2012a, b). 2014), simplified physically based models
(Formetta et al., 2016), coupled hydrological
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time series (Soto et al., 2017). However,
sufficient and accurate information about the
landslide and contributing parameters are
needed to construct landslide prediction model
(Zhu and Huang, 2009). Logistic regression
model was successfully used to map landslide
susceptibility in the past (Ayalew and
Yamagishi, 2005; Duman et al., 2006;
Nefeslioglu et al., 2008; Pradhan, 2010;
Ercanoglu and Temiz, 2011; Devkota et al.,
2013). In Logistic Regression, spatial
distribution of landslide is assessed on the basis
of interaction of only statistically significant
instability data and insignificant data are
excluded from consideration. Additionally
Logistic Regression analysis is free of data
distribution issues and can handle a variety of
datasets, such as continuous, categorical and
binary data. (Dai et al., 2001; Lee and Min,
2001; Lee and Sambath, 2006). Depending on
the case study, several factors can be used as the
landslide controlling factors. According to the
previous researches, earthquake (Yang et al.,
2014), human activities (Ayalew and
Yamagishi, 2005), land morphology (Gorsevski
et al., 2006), soil characteristics (Regmi et al.,
2010), slope (Lee, 2005; Yalcin, 2005), aspect
(Lee et al., 2004; Yalcin, 2008), hydrological
conditions (Komac, 2006) and the proximity to
some watershed features such as rivers and
faults (Ayalew and Yamagishi, 2005; Yalcin,
2005) are among the most important parameters
in landslide occurrence. Lee and Min (2001) say
that the major parameter of slope stability
analysis is the slope angle. Slope angle is very
regularly used in land slide susceptibility studies
since landsliding is directly related to slope
angle (Dai et al., 2001; Nefeslioglu et al., 2008).
Aspect is also considered as an important factor
in landslide susceptibility mapping (Lee, 2005;
Yalcin and Bulut, 2007). Aspect associated
parameters such as exposure to sunlight, drying
winds, rainfall and discontinuities may affect
the occurrence of landslide (Komac, 2006).
Altitude is useful to classify the local relief and
locate points of maximum and minimum heights
within the trains (Yalcin et al., 2010). Altitude
is a significant landslide affecting factor because
it is controlled by several geologic and
geomorphological processes (Gritzner et al.,
2001; Dai and Lee, 2002; Ayalew et al., 2005).
Lithology is one of the most important
parameters in landslide studies because different
lithological units have different erodibility
degrees (Dai et al., 2001; Yesilnacar and Topal,
2005; Yalcin and Bulute, 2007; Garcia-
Rodriguez et al., 2008; Regmi et al., 2013).
Some researchers (e.g. Yalcin, 2007) have

emphasized the importance of land use on slope
stability. The effecting factor of distance from
river, road and fault currently has been used
successfully (Pourghasemi et al., 2013a).The
influence of plan curvature on the slope erosion
processes is the convergence or divergence of
water during downhill flow (Oh and Pradhan,
2011). The plan curvature map was produced
using a system for automated geoscientific
analyses (SAGA) GIS. Another topographic
factor used in landslide susceptibility is the
topographic wetness index (TWI) which
measures the degree of accumulation of water at
a site (Pourghasemi et al., 2013c). The main
goal of this study is to produce landslide
susceptibility map using GIS-based Logistic
regression model in Latyan watershed, Iran,
where it is important for landslide hazards.

2. Materials and Methods
2.1. The study area

The study area is located in north of Tehran,
Iran, which is one of the most landslide-prone
areas in Iran. The watershed lies between the
longitudes of 530000 to 580000 N and latitudes
of 3950000 to 4000000 E, is mountainous and
lies in the geological Alborz folded zone (Fig.
1). It covers four adjacent 1:50,000 topographic
sheets and has an extent of about 70793
hectares. Latyan dam is located in the study
area. Climate is cool mountainous based on
Ambrose Climate Classification. The mean
annual rainfall is around 573 mm. In general,
the precipitation falls between November and
January based on the records from the Iranian
Meteorological Department. Altitude in the
study area varies between 1,500 to 4,325m.
From the view of landuse, some parts of the
study area are pasture and forest lands and some
parts are utilized for orchard, agriculture and
residence.

2.2. Methodology
2.2.1. Preparing landslide inventory map

The mapping of actual landslides in the study
area is essential for investigating the
relationship between the landslide distribution
and the effecting factors. To produce a detailed
and reliable landslide inventory map, extensive
field surveys and observations were performed
in the study area. A total of 208 landslides were
identified and mapped by investigating aerial
photos with the scale of 1:25,000 supported by
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Fig. 1. Location of the Latyan watershed and landslide inventory map

348000 556000 564000 572000
Latyan watershed N
§ Kilometer “.®E
e g
g
2
g
g
540000 548000 556000 564000 572000
field survey. Identified landslides were

classified into rotational and translational ones
according to the landslide classification system
proposed by Varnes (1978).

2.2.2. Preparing maps of effecting factors for
landslide occurrence

Various thematic data maps representing
landslide effecting factors, such as slope degree,
slope aspect, altitude, lithology, land use,

rainfall, Peak ground acceleration (PGA),
distance from faults, distance from rivers,
distance from roads, plan curvature and
topographic  wetness index (TWI), were

prepared. The layers of slope degree, slope
aspect, altitude, TWI, rain fall, distance from
river and plan curvature were produced using
Digital elevation model (DEM) with 10 meters
cell size created from digital topographic map of
the study area with the scale of 1:25000. The
geological map of the study area was prepared
by the Geological Survey of Iran (GSI) at
1:100,000 scale, and was digitized in GIS. The
land use layer was classified using a
Landsat/ETM+ satellite image for the year
2010. The layers of PGA and distance from road
and fault were derived from the geological map
at 1:100,000 scale.

2.2.3. Landslide susceptibility mapping using
Logistic regression (LR)

It is believed that among the wide range of
statistical methods proposed in landslide
susceptibility mapping, LR analysis has proven

to be one of the most reliable approaches
(Ayalew and Yamagishi, 2005). The logistic
regression permits one to draw a multivariate
regression relationship between a dependent
variable and several independent variables.
Logistic Regression, which is one of the
multivariate analysis models, is helpful for
forecasting the presence or absence of
characteristic or outcome based on the values of
a set of predictor variables. The advantage of
Logistic Regression is that, through the addition
of a suitable link function to the usual liner
regression model, the variables may be either
continues or discrete, or any combination of two
types and they do not necessarily have normal
distribution (Lee, 2005). In the landslide
susceptibility studies, Logistic Regression
Model is one the acceptable methods to
characterize the association between the
presence or absence of a landslide, the
dependent variable, and a set of independent
parameters such as slope, lithology and land
cover (Ayalew and Yamagishi, 2005). Presence
(1) and absence (0) coefficients can be utilized
to calculate approximate ratios for each of the
independent variables. Logistic Regression
analysis is generaly used in earth science, and
explained as a linear equation as given below
(Lee, 2005).

Y = logit(p) = In(p/1-p) (@)
Y=C0+C1X1+C2X2+....+Can (2)

where p is the probability that the dependent
variable (Y) is 1, p/(1-p) is the so-called odd or
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frequency ratio, Cy is the intercept and C; C,...
C, are coefficients, witch measure the
contribution of the independent factors (X;, X,
.. Xy) to the variations in Y (Lee, 2005). The
spatial association between landslide inventory
and the landslide factor maps (slope, aspect,
altitude, lithology, landuse, plan curvature,
TWI, distance from river, distance from fault
and distance from road) was assessed using the
Logistic Regression method.

2.2.4. Model Validation

Two statistical tests were carried out using an
IDRISI GIS environment, including: pseudo R?
and ROC to validate model. The pseudo R?
equal to 1 indicates a perfect fit, whereas O
shows no relationship. When a pseudo R? s
greater than 0.2, it shows a relatively good fit
(Clark and Hosking, 1986). A disjunctive
approach, which is much easier to interpret, is to
look at how well the model actually predicts the
dependent variable. In this case, IDRISI uses the
relative operating characteristic (ROC) to
compare a Boolean map of reality (the presence
or absence of landslides) with the probability
map. The ROC value ranges from 0.5 to 1,
where 1 indicates a perfect fit and 0.5 represents
a random fit (Ayalew and Yamagisi, 2005).
ROC nplots the different accuracy values
obtained against the whole range of possible
threshold values of the functions, and the AUC
serves as a global accuracy statistic for the
model, regardless of a specific discriminate
threshold. This curve is obtained by plotting all
combinations of sensitivities and proportions of
false negatives (1-specificity), which may be
obtained by varying the decision threshold.

3. Results and Discussion

A total of 208 landslides were identified in the
study area based on the interpretation of aerial
photographs and field surveys. Then the
landslide inventory map was produced in GIS
software (fig. 2). Of the 208 landslides
identified, 120 landslides were classified
transitional, while the remaining (88 landslides)
cases were classified as rotational. Different
landslide conditioning factor layers including
slope, aspect, altitude, lithology, land use,
rainfall, PGA, distance from faults, distance
from rivers, distance from roads, plan curvature
and TWI1 were prepared and shown in fig 2. The

slope map of the study area was classified into
nine categories namely: 0-5%, 5- 15%, 15-
20%, 20-30%, 30-65%, 65-100%, 100-200%,
200-400% and 400-700%. ArcGIS analysis
indicates most landslides (more than 50%)
occur when the percent of slope is 30-65% (fig.
2a). The aspect map is also grouped into nine
classes including flat and eight directions
namely south, southwest, west, northwest,
north, northeast, east and southeast. The
distribution of landslide on different aspect
classes shows about 45% of the landslides are
located into three directions north, northwest
and northeast (fig. 2b). The altitude map is
grouped into 9 classes namely: 1577-1800m,
1800-2000m, 2000-2300m, 2300-2500m, 2500-
2700m, 2700-3000m, 3000-3200m, 3200-
3500m and 3500-4316m. However landslides in
2000-2300 m are domain (23%) (fig. 2c).The
lithology maps of the study area were
differentiated into 22 lithological units. As a
result of the aerial distribution analysis
performed according to the lithological units,
most landslides (69%) are located within Ek
formation (fig. 2I). The study area was divided
to six land use classes. These classes are forest
land, irrigation agriculture, lake, pasture land,
rock land and residential land witch 76 % of the
landslides happened in pasture lands (fig. 2i). In
terms of rainfall six classes were divided that
the rainfall class of 450-550 is domain (35%)
(fig. 2e). PGA include five classes that the range
of 0.34-0.41 have a higher percentage landslide
(43%) (Fig. 2f). Plan curvature is described as
the curvature of a contour line formed by
intersecting a horizontal plane with the surface
(Fig. 2j). TWI showed that most landslide
occurred in the domain zon (Fig. 2k). In the case
of distance from river the study area was
divided into six different buffer ranges
including 0-200, 200-400, 400-650, 650-1200,
1200-1800, 1800-3400. The distance class of 0-
200 is more susceptible (30%) (Fig. 2g). The
distance from the faults is calculated using the
geological map. Results show that the interval
4000-6500 has more susceptible (31%) (Fig.
2K). Similar to the effect of the distance to river,
landslides may occur on the road. Six different
buffer zones are created on the path of the road
to determine the effect of the road on the
stability of slope. The results shown the
importance of 0-500 interval (35%) in terms of
susceptibility (Fig. 2d).
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Fig. 2. Continued. g distance from river map (m); h distance from fault map (m); i land use map; j plan curvature map; k
topographic wetness index map; | lithology map

After running Logistic Regression model
using stepwise method, six important
conditioning factors remained in the equation
and removed other factors (Equation 3). The six
remaining  conditioning  factors  namely:

lithology, distance from river, rainfall, distance
from road, slope and PGA have the highest
correlation with landslide. The results of spatial
relationship between landslides and remaining
conditioning factors using Logistic Regression
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model is shown in table 1. According to the
model coefficients (Table 1), lithology is
presented as the most important factor affecting
landslide occurrence (+12.032). It is extensively
accepted that lithology significantly influences
the occurrence of landslide, because lithological
variations often lead to a difference in the
strength and permeability of rocks and soils
(Yalcin et al., 2010). According to the lithology
map (fig. 2), most of the landslides are seen in
Ek Formation (69%). Parts of Ek Formation in
the study area consist of shale and siltstone
which increase erodibility. However lithology is
one of the most important parameters in

landslide studies because different lithological
units have different erodibility degrees (Dai et
al., 2001; Yesilnacar and Topal, 2005; Yalcin
and Bulute, 2007; Garcia-Rodriguez et al.,
2008). PGA, rainfall, slope degree, distance
from road and distance from river are the next
important effecting parameters. Lithology,
rainfall, slope and PGA have shown direct
relationship and distance from river and road
indirect relationship with the landslide
occurrence. By substituting coefficients, a
Logistic regression equation was obtained as
shown in equation 3.

Table 1. Selected conditioning factors based on Logistic Regression model

Landslide conditioning factors

Model coefficients

Lithology
distance from river
Rainfall
distance from road
Slope
PGA
Constant coefficient

+12.032
-0.003
+0.169
-0.011
+0.146
+4.45
+7.710

Y= 7.710+12.032 Lithology-0.003River+ 0.169
Rainfall- 0.011 Road+ 0.146 Slope+4.45 PGA

@)

The landslide susceptibility map has a
continuous scale of numerical values and there
is a need to separate these values into
susceptibility classes. There are several
mathematical methods for classifying the
susceptibility degrees. In this research, we used
Natural break method (Pourghasemi et al.,
212c). The landslide susceptibility map was
classified into five following susceptibility
classes: Very high, high, moderate, low and
very low (fig. 3). The area and percentage of

each susceptibly class is shown in Table 2.
However, the statistic that can help to determine
how well this method classified the areas of
landslides is chi-square statistic (Yalcin et al.,
2011). The results showed that the susceptibility
classes are well separated by Logistic
Regression and internal differences in
susceptibility classes is significant at a
confidence level of 95% (p<0.05). The results
show that 34.71 % of the basin is located in
very low susceptibility class, 34.68% in low
susceptibility class, 20.19% in medium
susceptibility class, 7.56% in high susceptibility
class and 2.88% in very high susceptibility
class.

Table 2. Landslide susceptibility classes in the Latyan Watershed based on Logistic regression model

Land slide class Expressive traits Area (ha) Area (%)
1 Very low 24574.67 34.71
1l Low 24551.71 34.68
1 Medium 1429451 20.19
v High 5353.14 7.56
\% Very high 2040.27 2.88
Total 70793 100

In order to validate landslide susceptibility
map, two statistics were used. The results are
presented in table 3 and fig. 4. As it can be seen,
the amount of pseudo R? (0.32) shows a good
fit. In the ROC Method, it is necessary to apply,
the landslide data sets that were not used in
model building process. For doing this, the total
landslides observed in the study area, were split
into 2 parts, 156 (75 %) was randomly selected
from the total 208 landslides as the training data

and the remaining 52 (25 %) landslides are kept
for validation propose. Spatial effectiveness of
these susceptibility maps was checked by
receiver operating characteristics (ROC). Since
the area under the ROC curve (AUC) is high
(0.85), the result of the test is excellent (table 1).
The ROC method is already widely used as a
measure of performance of a predictive rule
(Yesilnacar and Topal, 2005; Van Den Eeckhaut
et al., 2006; Pradhan et al., 2010 a, b).
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Fig. 3. Landslide susceptibility map based on LR model

Table 3. Summary statistics of the Logistic regression model

Statistics Value
Pseudo R’ 0.32
ROC 0.85

True Positive

0 23471
False Positive

48.762 74.381 100

Fig. 4. Rock curve for the landslide susceptibility maps produced by Logistic Regression model

4, Conclusion

Since landslides are among the most dangerous
natural disaster, for many years researchers
worldwide have attempted to assess the
landslide susceptibility analysis by using
different methods. The preparation of landslide
susceptibility maps is of great interest to
planning agencies for preliminary hazard
studies, especially when a regulatory planning

policy is to be implemented (Pourghasemi et al.,
2014). However, in this research, application of
the Logistic Regression model for the spatial
prediction of landslide susceptibility in Latyan
watershed, Iran has been successfully
demonstrated. The region is continually at risk
of landslide since the topography and
lithological materials make the area susceptible
to landsliding. Logistic regression was used by
many researchers successfully. For example,
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Brenning (2005) by comparing different
methods, considered Logistic Regression model
as an appropriate method to spatial prediction of
landslide susceptibility. Lee (2004), also
showed that the landslide susceptibility maps
based on Bayesian probability model, a
likelihood ratio model, and Logistic Regression
was verified and compared with known
landslide locations. The Logistic Regression
model had higher prediction accuracy than the
likelihood ratio model. However, proper
efficiency of logistic regression has been shown
in many other previous studies (Pourghasemi et
al., 2014, Ayalew and Yamagishi, 2005, Yalsin,
et al., 2011). There are no universal guidelines
to select casual factors in landslide
susceptibility. In this study, we tried to use the
maximum number of factors and 12 causing
factors were finally selected to landslide
susceptibility analysis. Of the 12 basic factors,
six factors were selected and other factors were
excluded by regression model. These six
selected factors are: Lithology, distance from
river, rainfall, distance from road, slope and
PGA. According to the logistic regression
output coefficients (table 1), Lithology is the
most important causing factor in landslidnce
occurrence (coefficient of +12.032). Most of the
landslides are found in Ek Formation (69%).
Model validation was performed using Pseudo
R? and relative operating characteristics curve
(ROC) by comparing the existing landslide
locations with the landslide susceptibility map.
Results indicated the high efficiency of the
Logistic Regression model with pseudo R?
(0.32) and AUC (0.85) (Table 3). The results
show that 34.71 % of the basin is located in
very low susceptibility class, 34.68% in low
susceptibility class, 20.19% in medium
susceptibility class, 7.56% in high susceptibility
class and 2.88% in very high susceptibility
class. As a final conclusion, results can provide
useful information for planners, decision
makers, and engineers to make better decisions
in landslide areas.
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