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Abstract 
 
     Every year, hundreds of people all over the world lose their lives due to landslides. Landslide susceptibility map 
describes the likelihood or possibility of new landslides occurring in an area, and therefore helping to reduce future 
potential damages. The main purpose of this study is to provide landslide susceptibility map using logistic regression 
model at Latyan watershed, north Iran. In the first stage, 208 Landslide locations were identified and mapped using 
extensive field surveys. 75 % of these landslides were used for training and 25 % of them for validation of the model. 
The mapped landslides were then georeferenced using ArcGIS 10 to provide the landslide inventory map. In the 
second stage, maps of factors affecting the occurrence of landslides were prepared in ArcGIS 10. Finally in the last 
stage, the relationships between these affecting factors and the landslide inventory map were calculated using 
Logistic regression algorithm. The amount of pseudo R2 (0.32) and AUC (0.85) shown the high efficiency of Logistic 
regression model. According to the coefficients obtained by the model, lithology is the most important factor 
affecting landslide occurrence (coefficient= +12.032). Most landslides (69%) are located within Ek Formation. The 
results indicated that 7.56% of the basin is located in high susceptibility class and 2.88% in very high susceptibility 
class.  
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1. Introduction 
 
Landslides are amongst the most damaging 
natural hazards. Every year, hundreds of people 
all over the world lose their lives due to 
landslides. This phenomenon also causes 
extensive damages to constructions and 
infrastructures as well as a thousand casualties 
annually. In Iran, about 187 people have been 
killed by landslides and some infrastructure 
such as forest roads (3 km), railroads (6 km), 
main roads (252.67 km), and rural roads (46 
km) have been damaged in a period of 25 years 
(between 1982 and 2007) (Iranian Landslide 
Working Party 2007). The monetary losses due 
to mass movements have been estimated to be 
126,893 billion Iranian Rials until the end of 
September 2007 (Pourghasemi et al., 2012a, b).  
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Preventing natural hazards such as landslide is 
one of the best practices in watershed 
management activities. Susceptibility map 
provides a document that describes the 
likelihood or possibility of new landslides 
occurring in an area, and therefore, helping to 
reduce future potential damages. Landslide 
susceptibility modeling (LSM) and analysis are 
performed through varieties of methods and 
techniques including artificial neural network 
models (Zare et al., 2013), support vector 
machine models (Dou et al., 2015), bivariate 
models (Youssef et al., 2015), weights-of-
evidence models (Regmi et al., 2014), fuzzy 
logic models (Pourghasemi et al., 2012c), 
Dempster–Shafer model (Pourghasemi et al., 
2013b), frequency ratio model (Jafari et al., 
2014), simplified physically based models 
(Formetta et al., 2016), coupled hydrological 
and geotechnical models (Zhang et al., 2016) 
and multi-method integrated geophysical, 
geotechnical, mineralogical and precipitation 
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time series (Soto et al., 2017).  However, 
sufficient and accurate information about the 
landslide and contributing parameters are 
needed to construct landslide prediction model 
(Zhu and Huang, 2009). Logistic regression 
model was successfully used to map landslide 
susceptibility in the past (Ayalew and 
Yamagishi, 2005; Duman et al., 2006; 
Nefeslioglu et al., 2008; Pradhan, 2010; 
Ercanoglu and Temiz, 2011; Devkota et al., 
2013). In Logistic Regression, spatial 
distribution of landslide is assessed on the basis 
of interaction of only statistically significant 
instability data and insignificant data are 
excluded from consideration. Additionally 
Logistic Regression analysis is free of data 
distribution issues and can handle a variety of 
datasets, such as continuous, categorical and 
binary data. (Dai et al., 2001; Lee and Min, 
2001; Lee and Sambath, 2006). Depending on 
the case study, several factors can be used as the 
landslide controlling factors.  According to the 
previous researches, earthquake (Yang et al., 
2014), human activities (Ayalew and 
Yamagishi, 2005), land morphology (Gorsevski 
et al., 2006), soil characteristics (Regmi et al., 
2010), slope (Lee, 2005; Yalcin, 2005), aspect 
(Lee et al., 2004; Yalcin, 2008), hydrological 
conditions (Komac, 2006) and the proximity to 
some watershed features such as rivers and 
faults (Ayalew and Yamagishi, 2005; Yalcin, 
2005) are among the most important parameters 
in landslide occurrence. Lee and Min (2001) say 
that the major parameter of slope stability 
analysis is the slope angle. Slope angle is very 
regularly used in land slide susceptibility studies 
since landsliding is directly related to slope 
angle (Dai et al., 2001; Nefeslioglu et al., 2008). 
Aspect is also considered as an important factor 
in landslide susceptibility mapping (Lee, 2005; 
Yalcin and Bulut, 2007). Aspect associated 
parameters such as exposure to sunlight, drying 
winds, rainfall and discontinuities may affect 
the occurrence of landslide (Komac, 2006). 
Altitude is useful to classify the local relief and 
locate points of maximum and minimum heights 
within the trains (Yalcin et al., 2010). Altitude 
is a significant landslide affecting factor because 
it is controlled by several geologic and 
geomorphological processes (Gritzner et al., 
2001; Dai and Lee, 2002; Ayalew et al., 2005). 
Lithology is one of the most important 
parameters in landslide studies because different 
lithological units have different erodibility 
degrees (Dai et al., 2001; Yesilnacar and Topal, 
2005; Yalcin and Bulute, 2007; Garcia-
Rodriguez et al., 2008; Regmi et al., 2013). 
Some researchers (e.g. Yalcin, 2007) have 

emphasized the importance of land use on slope 
stability. The effecting factor of distance from 
river, road and fault currently has been used 
successfully (Pourghasemi et al., 2013a).The 
influence of plan curvature on the slope erosion 
processes is the convergence or divergence of 
water during downhill flow (Oh and Pradhan, 
2011). The plan curvature map was produced 
using a system for automated geoscientific 
analyses (SAGA) GIS. Another topographic 
factor used in landslide susceptibility is the 
topographic wetness index (TWI) which 
measures the degree of accumulation of water at 
a site (Pourghasemi et al., 2013c). The main 
goal of this study is to produce landslide 
susceptibility map using GIS-based Logistic 
regression model in Latyan watershed, Iran, 
where it is important for landslide hazards. 
 
2. Materials and Methods 
 
2.1. The study area 
 
The study area is located in north of Tehran, 
Iran, which is one of the most landslide-prone 
areas in Iran. The watershed lies between the 
longitudes of 530000 to 580000 N and latitudes 
of 3950000 to 4000000 E, is mountainous and 
lies in the geological Alborz folded zone (Fig. 
1). It covers four adjacent 1:50,000 topographic 
sheets and has an extent of about 70793 
hectares. Latyan dam is located in the study 
area. Climate is cool mountainous based on 
Ambrose Climate Classification. The mean 
annual rainfall is around 573 mm. In general, 
the precipitation falls between November and 
January based on the records from the Iranian 
Meteorological Department. Altitude in the 
study area varies between 1,500 to 4,325m. 
From the view of landuse, some parts of the 
study area are pasture and forest lands and some 
parts are utilized for orchard, agriculture and 
residence.   
 
2.2. Methodology 
 
2.2.1. Preparing landslide inventory map 
 
The mapping of actual landslides in the study 
area is essential for investigating the 
relationship between the landslide distribution 
and the effecting factors. To produce a detailed 
and reliable landslide inventory map, extensive 
field surveys and observations were performed 
in the study area. A total of 208 landslides were 
identified and mapped by investigating aerial 
photos with the scale of 1:25,000 supported by  
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frequency ratio, C0 is the intercept and C1, C2… 
Cn are coefficients, witch measure the 
contribution of the independent factors (X1, X2, 

… Xn) to the variations in Y (Lee, 2005). The 
spatial association between landslide inventory 
and the landslide factor maps (slope, aspect, 
altitude, lithology, landuse, plan curvature, 
TWI, distance from river, distance from fault 
and distance from road) was assessed using the 
Logistic Regression method. 
 
2.2.4. Model Validation  
 
Two statistical tests were carried out using an 
IDRISI GIS environment, including: pseudo R2 
and ROC to validate model. The pseudo R2 
equal to 1 indicates a perfect fit, whereas 0 
shows no relationship. When a pseudo R2    is 
greater than 0.2, it shows a relatively good fit 
(Clark and Hosking, 1986). A disjunctive 
approach, which is much easier to interpret, is to 
look at how well the model actually predicts the 
dependent variable. In this case, IDRISI uses the 
relative operating characteristic (ROC) to 
compare a Boolean map of reality (the presence 
or absence of landslides) with the probability 
map. The ROC value ranges from 0.5 to 1, 
where 1 indicates a perfect fit and 0.5 represents 
a random fit (Ayalew and Yamagisi, 2005).   
ROC plots the different accuracy values 
obtained against the whole range of possible 
threshold values of the functions, and the AUC 
serves as a global accuracy statistic for the 
model, regardless of a specific discriminate 
threshold. This curve is obtained by plotting all 
combinations of sensitivities and proportions of 
false negatives (1-specificity), which may be 
obtained by varying the decision threshold. 
 
3. Results and Discussion 
 
A total of 208 landslides were identified in the 
study area based on the interpretation of aerial 
photographs and field surveys. Then the 
landslide inventory map was produced in GIS 
software (fig. 2). Of the 208 landslides 
identified, 120 landslides were classified 
transitional, while the remaining (88 landslides) 
cases were classified as rotational. Different 
landslide conditioning factor layers including 
slope, aspect, altitude, lithology, land use, 
rainfall, PGA, distance from faults, distance 
from rivers, distance from roads, plan curvature 
and TWI were prepared and shown in fig 2. The 

slope map of the study area was classified into 
nine categories namely: 0–5%, 5– 15%, 15–
20%, 20–30%, 30–65%, 65–100%, 100–200%, 
200–400% and 400–700%. ArcGIS analysis 
indicates most landslides (more than 50%) 
occur when the percent of slope is 30-65% (fig. 
2a). The aspect map is also grouped into nine 
classes including flat and eight directions 
namely south, southwest, west, northwest, 
north, northeast, east and southeast. The 
distribution of landslide on different aspect 
classes shows about 45% of the landslides are 
located into three directions north, northwest 
and northeast (fig. 2b). The altitude map is 
grouped into 9 classes namely: 1577-1800m, 
1800-2000m, 2000-2300m, 2300-2500m, 2500-
2700m, 2700-3000m, 3000-3200m, 3200-
3500m and 3500-4316m. However landslides in 
2000-2300 m are domain (23%) (fig. 2c).The 
lithology maps of the study area were 
differentiated into 22 lithological units. As a 
result of the aerial distribution analysis 
performed according to the lithological units, 
most landslides (69%) are located within Ek 
formation (fig. 2l). The study area was divided 
to six land use classes. These classes are forest 
land, irrigation agriculture, lake, pasture land, 
rock land and residential land witch 76 % of the 
landslides happened in pasture lands (fig. 2i). In 
terms of rainfall six classes were divided that 
the rainfall class of 450-550 is domain (35%) 
(fig. 2e). PGA include five classes that the range 
of 0.34-0.41 have a higher percentage landslide 
(43%) (Fig. 2f). Plan curvature is described as 
the curvature of a contour line formed by 
intersecting a horizontal plane with the surface 
(Fig. 2j). TWI showed that most landslide 
occurred in the domain zon (Fig. 2k). In the case 
of distance from river the study area was 
divided into six different buffer ranges 
including 0-200, 200-400, 400-650, 650-1200, 
1200-1800, 1800-3400. The distance class of 0-
200 is more susceptible (30%) (Fig. 2g). The 
distance from the faults is calculated using the 
geological map. Results show that the interval 
4000-6500 has more susceptible (31%) (Fig. 
2k). Similar to the effect of the distance to river, 
landslides may occur on the road. Six different 
buffer zones are created on the path of the road 
to determine the effect of the road on the 
stability of slope. The results shown the 
importance of 0-500 interval (35%) in terms of 
susceptibility (Fig. 2d). 
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model is shown in table 1. According to the 
model coefficients (Table 1), lithology is 
presented as the most important factor affecting 
landslide occurrence (+12.032). It is extensively 
accepted that lithology significantly influences 
the occurrence of landslide, because lithological 
variations often lead to a difference in the 
strength and permeability of rocks and soils 
(Yalcin et al., 2010). According to the lithology 
map (fig. 2), most of the landslides are seen in 
Ek Formation (69%). Parts of Ek Formation in 
the study area consist of shale and siltstone 
which increase erodibility. However lithology is 
one of the most important parameters in 

landslide studies because different lithological 
units have different erodibility degrees (Dai et 
al., 2001; Yesilnacar and Topal, 2005; Yalcin 
and Bulute, 2007; Garcia-Rodriguez et al., 
2008). PGA, rainfall, slope degree, distance 
from road and distance from river are the next 
important effecting parameters. Lithology, 
rainfall, slope and PGA have shown direct 
relationship and distance from river and road 
indirect relationship with the landslide 
occurrence. By substituting coefficients, a 
Logistic regression equation was obtained as 
shown in equation 3.  

 
                           Table 1. Selected conditioning factors based on Logistic Regression model 

Landslide conditioning factors Model coefficients 
Lithology +12.032 

distance from river - 0.003 
Rainfall +0.169 

distance from road -0.011 
Slope +0.146 
PGA +4.45 

Constant coefficient +7.710 

 
Y= 7.710+12.032 Lithology-0.003River+ 0.169 
Rainfall- 0.011 Road+ 0.146 Slope+4.45 PGA   
                                                                         (3) 
 
     The landslide susceptibility map has a 
continuous scale of numerical values and there 
is a need to separate these values into 
susceptibility classes. There are several 
mathematical methods for classifying the 
susceptibility degrees. In this research, we used 
Natural break method (Pourghasemi et al., 
212c). The landslide susceptibility map was 
classified into five following susceptibility 
classes: Very high, high, moderate, low and 
very low (fig. 3). The area and percentage of 

each susceptibly class is shown in Table 2. 
However, the statistic that can help to determine 
how well this method classified the areas of 
landslides is chi-square statistic (Yalcin et al., 
2011). The results showed that the susceptibility 
classes are well separated by Logistic 
Regression and internal differences in 
susceptibility classes is significant at a 
confidence level of 95% (p<0.05). The results 
show that 34.71 % of the basin is located in 
very low susceptibility class, 34.68% in low 
susceptibility class, 20.19% in medium 
susceptibility class, 7.56% in high susceptibility 
class and 2.88% in very high susceptibility 
class. 

 
            Table 2. Landslide susceptibility classes in the Latyan Watershed based on Logistic regression model 

Area (%) Area (ha) Expressive traits Land slide class 
34.71 24574.67 Very low I 
34.68 24551.71 Low II 
20.19 14294.51 Medium III 
7.56 5353.14 High IV 
2.88 2040.27 Very high V 
100 70793 Total  

 
     In order to validate landslide susceptibility 
map, two statistics were used. The results are 
presented in table 3 and fig. 4. As it can be seen, 
the amount of pseudo R2 (0.32) shows a good 
fit. In the ROC Method, it is necessary to apply, 
the landslide data sets that were not used in 
model building process. For doing this, the total 
landslides observed in the study area, were split 
into 2 parts, 156 (75 %) was randomly selected 
from the total 208 landslides as the training data 

and the remaining 52 (25 %) landslides are kept 
for validation propose. Spatial effectiveness of 
these susceptibility maps was checked by 
receiver operating characteristics (ROC). Since 
the area under the ROC curve (AUC) is high 
(0.85), the result of the test is excellent (table 1). 
The ROC method is already widely used as a 
measure of performance of a predictive rule 
(Yesilnacar and Topal, 2005; Van Den Eeckhaut 
et al., 2006; Pradhan et al., 2010 a, b). 
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Brenning (2005) by comparing different 
methods, considered Logistic Regression model 
as an appropriate method to spatial prediction of 
landslide susceptibility. Lee (2004), also 
showed that the landslide susceptibility maps 
based on Bayesian probability model, a 
likelihood ratio model, and Logistic Regression 
was verified and compared with known 
landslide locations. The Logistic Regression 
model had higher prediction accuracy than the 
likelihood ratio model. However, proper 
efficiency of logistic regression has been shown 
in many other previous studies (Pourghasemi et 
al., 2014, Ayalew and Yamagishi, 2005, Yalsin, 
et al., 2011). There are no universal guidelines 
to select casual factors in landslide 
susceptibility. In this study, we tried to use the 
maximum number of factors and 12 causing 
factors were finally selected to landslide 
susceptibility analysis. Of the 12 basic factors, 
six factors were selected and other factors were 
excluded by regression model. These six 
selected factors are: Lithology, distance from 
river, rainfall, distance from road, slope and 
PGA. According to the logistic regression 
output coefficients (table 1), Lithology is the 
most important causing factor in landslidnce 
occurrence (coefficient of +12.032). Most of the 
landslides are found in Ek Formation (69%). 
Model validation was performed using Pseudo 
R2 and relative operating characteristics curve 
(ROC) by comparing the existing landslide 
locations with the landslide susceptibility map. 
Results indicated the high efficiency of the 
Logistic Regression model with pseudo R2 

(0.32) and AUC (0.85) (Table 3). The results 
show that 34.71 % of the basin is located in 
very low susceptibility class, 34.68% in low 
susceptibility class, 20.19% in medium 
susceptibility class, 7.56% in high susceptibility 
class and 2.88% in very high susceptibility 
class. As a final conclusion, results can provide 
useful information for planners, decision 
makers, and engineers to make better decisions 
in landslide areas. 
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