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A B S T R A C T 

 

Combining two methods of computational fluid dynamics (CFD) and design of experiments (DOE) was proposed in modeling to 
simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier 
in an industrial scale. The effects of operating parameters, including feed flow rate, solid content and baffle length, were evaluated based on 
the classifier overflow velocity and cut-size as the process responses. The evaluation sequence was as follows: the variation levels of parameters 
was first evaluated using industrial measurement, and then a suitable experimental design was carried out and the DOE matrix was translated 
to CFD input. Afterwards, the overflow velocity values were predicted by CFD, and the cut-size values were determined using industrial and 
CFD results. The overflow velocity and cut-size values were statistically analyzed to develop the prediction models for DOE responses; and 
finally, the main interaction effects were interpreted with respect to DOE and CFD results. Statistical effect plots along with CFD fluid flow 
patterns showed the effects of type and magnitude of operating parameters on the classifier performance, and visualized the mechanism by 
which those effects occurred. The suggested modeling method seems to be a useful approach for better understanding the real operational 
phenomena within the fluid-base separation devices. Furthermore, the individual interaction effects can also be identified and used for 
interpretation of responses in nonlinear processes. 
 

Keywords : modeling, hydrodynamic simulation, experimental design, hydraulic classifier, industrial application 

1. Introduction 

Hydraulic classifiers are widely applied in mineral processing industries 
for washing and/or sorting the particulate feeds. Common applications 
of hydraulic classifiers include fine coal classification, dewatering of coal 
tailings prior to centrifugation [1], clay removal from siliceous sands [2, 
3], purification of cement materials [4], particle size control in closed 
grinding circuits [4, 5], fine particles control in iron pellet washing, the 
removal of silica from iron ores [5]. Hydraulic classifiers actually consist 
of a sorting chamber in which a moving fluid, commonly water, divides 
an input stream of particles with a wide size distribution into two fine 
overflow and coarse underflow products. The overflow stream is 
generally considered as the final treated product directed to the 
downstream processing units. The accepted representative measure for 
evaluation of a classifier performance is the cut-size value (d50) that is 
the size giving particles an equal chance to join overflow or underflow 
streams [6]. 
Since hydraulic classifiers use the governing rules of fluid flow in a 
predefined geometry, the computational fluid dynamics (CFD) method 
can be used for simulation of hydrodynamic response of classifier to the 
changes in operating parameters. CFD uses numerical methods to solve 
the fundamental nonlinear differential equations to describe the fluid 
flow pattern and to predict the flow velocity in each region within the 
classifier chamber wherein flow occurs. CFD helps engineers to evaluate 
the effects of operating parameters on the system performance with less 
time, expense, and also disruption that is required to make actual 
physical changes to the existing system. CFD also uses a very compelling 

non-intrusive virtual modeling technique with powerful visualization 
capabilities, and the obtained information reveals what modification 
satisfies the design criteria. Additionally, the selected fundamental 
equations for CFD modeling process can be validated by experimental 
data to enhance the reliability of simulation results [7]. Computational 
fluid dynamics has been successfully used to model the effects of 
operating factors on the operational performance of different type of 
classifiers. For example, Bhaskar et al. [8, 9] simulated the performance 
of hydrocyclone using different types of turbulence models and 
evaluated the effect of multiple operating parameters, including spigot 
opening and inlet pressure, on vertical velocity of water within the 
cyclone chamber. Narasimha et al. [10] used a multiphase CFD model 
with sub-modules for the air-core turbulence and particle classification 
with a suitable slurry viscosity model to simulate the performance of 
hydrocyclones. They showed that the overall classification curve 
predicted close to the experimental data. Swain and Mohanty [11] 
simulated hydrocyclones in solid-liquid state using an Eulerian–
Eulerian CFD approach. They indicated that under two-phase 
simulation conditions, different turbulence models showed slight 
variation in prediction of the velocity profile and the separation 
efficiency. The maximum deviation between the two models was 
observed near the wall where the stress was maximum for larger 
particles. Recently, Kępa [12] applied CFD method to improve the 
efficiency of a large-diameter cyclone. He showed that the applied model 
correctly reflected the flow through the device and facilitated the 
estimation of the separation efficiency. Safa and Goharrizi [13] 
optimized the performance of an industrial hydrocyclone by applying a 
three-dimensional computational fluid dynamics simulation together 
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with experimental field measurements. They investigated the effect of 
inlet solid percentage, pulp inlet velocity, rod inserted in the middle of 
the hydrocyclone, and apex diameter on hydrocyclone performance. 
Johansson and Evertsson [14, 15] used computational fluid dynamics to 
improve the understanding of the influence of the geometric design of 
the air classifiers on the cut size and the resulting particle size 
distribution. Simulations were performed with a CFD model using an 
Euler–Lagrange approach. Their simulation results showed that the 
classification results are affected by air flow velocity, particle shape, 
particle size, the geometry of the air classifier, and the turbulence in air 
flow. Jarkani et al. [16] modeled the effects of structural and dimensional 
manipulations on hydrodynamic behaviour of a bench vertical current 
classifier. They confirmed the goodness of CFD application in optimized 
design of vertical current classifiers. Apart from advantages of CFD 
method, engineers can only simulate the process response through one 
factor at a time strategy while holding other parameters at a constant 

level; thus, interaction effects between dependent variables are 
disregarded. A more effective method which has recently attracted the 
attention of engineers is to apply a systematic approach to 
experimentation so that one can simultaneously consider all factors. 
This approach is called design of experiments (DOE) that provides 
useful information about the interaction of operating variables and the 
way the total system works by using statistical analyses [13].  
There are different parameters affecting the performance of hydraulic 
classifiers which can be categorized into operating and mechanical 
factors. Operating parameters include those related to the input feed 
characteristics and mechanical factors are the design and dimensional 
aspects of classifier. The effects of these parameters on classifier 
performance and the products selectivity and quality have been 
investigated by several researchers. Table 1 summarizes the studied 
parameters reported in literature. 

Table 1. Parameters affecting the performance of hydraulic classifiers 

Type of parameter Parameter [Reference] 

Operating parameters Feed pulp density [17, 19, 20, 29], Feed flow rate [18, 22, 31], Particle size [18-20, 22, 25], Particle density [20, 22, 25] 

Mechanical factors Capacity [17], Fluidization rate [17, 22, 27, 29-31], Rotor speed [18, 24], Rotor aspects ratio [18, 24], Sorting chamber aspect ratio [21, 25, 

26], Product discharge diameter [21] and curvature [32], Baffle aspect ratio [16, 21, 23, 32] and angle [16, 23, 32], Teeter bed hole diameter 

[26, 28] and pattern [28] 

 

2. Stages in the Modeling Process 

The modeling was carried out based on the following sequence, as 
schematically is shown in Fig. 1: 

Studies started with collecting metallurgical data from a coal 
hydraulic classifier at Zarand Coal Washing Plant (Zarand, Iran) to 
determine variation ranges for operating parameters, 

An experimental design was constructed for assessment of the effects 
of operating variables on process responses; overflow velocity, flow rate 
and cut-size were considered as process responses, 

The statistical experimental design was converted into the 
computational fluid dynamics modeling input, 

The CFD model was developed and validated by using a series of 
batch experiments, 

The overflow velocity value for each translated DOE run was 
predicted by CFD model and then, results were put in original statistical 
DOE, 

Modeling results were statistically analyzed using analyses of variance 
(ANOVA) methodology, 

A statistical model was then developed for evaluation of how 
operating variables affect the considered process responses, 

Finally, the effects of operating parameters on product cut-size were 
interpreted using statistical and CFD modeling results. 

2.1. Industrial Investigations 

Fig. 2 shows the schematic illustration of studied hydraulic classifier 
at Zarand Coal Washing Plant, Zarand, Iran. As seen in Fig. 2, classifier 
is fed by different pulp lines and yields an underflow tailings product 
and an overflow stream as the final classification product which is 
further processed in flotation circuit. Cut-size of overflow product is a 
key factor for evaluation of classifier performance. Thus, the effects of 
operating parameters on cut-size are required to be investigated 
continuously by quality control division. In this study, feed pulp flow 
rate and solid content were first considered as the experimental 
variables. These parameters are those which can be easily manipulated 
by technical engineers in the plant. The effect of operating variables was 
evaluated using an experimental design described in the next section. 
The experimental data were measured using the samples that were 
collected following an 8-month sampling program; therefore, 140 
representative samples were collected from feed and product streams. 
For preparing each representative sample, 5 sub-samples of volume 20 
liters were collected in each operating shift and then mixed, dried and 

divided to obtain appropriate weight of the sample (about 500 g) for 
particle size analysis. Each sample was collected using a 30-lit bucket. 
Other parameters including pulp flow rate and solids content were also 
measured during the sample collection period. Feed flow rate was 
calculated by dividing the volume of each incremental sample by the 
time taken to fill the bucket. Solids content of each representative 
sample was determined by weighing the samples before and after drying. 
Actual cut size values were also determined by plotting the partition 
coefficient curve for each sample, i.e. each particle size fraction in feed 
were transferred to the underflow stream. 

 
Fig. 1. Stages considered for development of the proposed modeling approach. 
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Fig. 2. 3D view and dimensional drawing of the coal hydraulic classifier used for 

simulations. 

2.2. Construction of experimental design 

Different types of experimental designs have been developed by 
statisticians. The choice of appropriate design depends on the objectives 
of investigations and the number of parameters to be investigated. Since 
the main objective of this study was to investigate the effects of 
operating parameters on hydrodynamic response of classifier, full 
factorial design was selected. Full factorial is a suitable designing 
technique which is commonly used for process analysis and modeling 
[38, 39]. This statistical design helps researchers to introduce 
mathematical equations that describe the way the studied variables 
affect the target response(s). Additionally, full factorial design allows 
one to estimate the interaction effects and the nonlinear relations 
between the variables and existing response [40].  

A full factorial design requires at least three levels for each variable to 
estimate the coefficients of the nonlinear terms in the prediction model. 
The levels of interest for each operating variable were selected based on 
the variation ranges of input and output variables measured during 
industrial investigations in the plant. As shown in Fig. 2, the classifier is 
equipped with a removable baffle plate of 3.9 m in length, to moderate 
turbulence condition inside the classifier chamber. As technical 
engineers requested, the effect of baffle presence or absence on cut-size 
was also considered in experimental design. Therefore, a theoretical 
mid-length of 1.95 m was also included in the factorial design to evaluate 
the potential nonlinear effect of baffle length. However, it should be 
noted that the classifier was equipped with original baffle plate with a 
length of 3.9 m during industrial sampling program. Table 2 presents the 
considered ranges for studied variables. The experimental design matrix 
shown in Table 3 consists of a three-level full factorial design with 27 
experimental points (33 = 27). 

 

Table 2. Independent variables and their levels for full factorial design. 

Coded 

Symbol 
Variables Units 

Variable level 

-1 0 +1 

A Feed flowrate (Q) m3/s 0.05 1.55 3.05 

B Solid content (X) % 5 15 25 

C Baffle length (L) m 0 1.95 3.9 

2.3. Computational Fluid Dynamic Modeling 

2.3.1. The model theory 
Incompressible Navier-Stokes equation in combination with a 

turbulent flow model is commonly applied for simulation of flow 
patterns in water-base separators. To predict the fluid flow pattern in 
hydraulic classifier studied in this paper, the governing equation consists 

of the continuity and momentum balance equations for the liquid phase, 
as follows [16]: 

v 0  (1) 

vv p . g  (2) 

where ρ is the fluid density, g denotes the gravity, v represents the 
velocity of fluid, and p is the static pressure. The stress tensor τ can be 
calculated as follows: 
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v v
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 where μ and μeffective are dynamic and effective viscosity, 
respectively [8]. The momentum equation can be solved using a 
turbulent flow (TF) model. The standard k–ε dispersed turbulence 
model is a TF model commonly used for engineering purposes. 
Variables k and ε indicate turbulent kinetic energy and turbulent 
dissipation rate, respectively. The k–ε model is solved using the 
following equations: 
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where Gk is the kinetic energy due to velocity gradient and μt is the 
viscosity of turbulent flow. These parameters can be calculated using the 
following equations: 
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where u’ is the velocity vector and C1ε, C2ε, σk, σε and Cη are constants 
[16]. 

2.3.2. Industrial scale modeling 
This simulation used the steady state pressure based implicit 

formulation of Fluent 6.3 software [41] which employs the finite volume 
method and the 3D physical meshing of the classifier that was 
constructed in pre-processor Gambit 2.3. The whole computational 
domain was divided into structured hexahedron grids. A ‘‘velocity inlet’’ 
boundary condition was used at the classifier inlet and outlets. The 
initial and boundary conditions were set on the basis of experimental 
data: inlet pulp velocity of 3 m/s, pulp density of 1099 kg/m3 (15% solid 
content), and atmospheric pressure. As seen in Fig. 2, the classifier is fed 
by different pulp lines; therefore, the discharge gate of the classifier feed 
box (ABCD section) was considered as feed inlet to simplify the 
graphical construction of meshing design. In order to approximate more 
accurate results, the residual convergence and iteration values were 
fixed at 1x10-5 and 30,000, respectively [41, 42]. 

2.3.3. Validation of model 
The model validation was carried out through the experimental data 

that where gathered based on a set of batch tests at laboratory using a 
bench scale hydraulic classifier (Fig. 3). Pulp flowrate (Q) and density 
(D) were selected as operating parameters (Table 4). Afterwards, pulp 
velocity in overflow discharge gate in the used hydraulic classifier was 
predicted and plotted against the predicted values. 

3. Results and Discussion 

3.1. Validation of CFD model 

Pulp velocity values in overflow outlet as the response of 
experimental design are listed in Table 4. To assess the accuracy of CFD 
model, the determination coefficient (R2) was calculated as follows [43]: 
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where SSres and SStot are residual and total sum of squares, 
respectively, 

2

res exp,i model,i

i

SS (v v )  

2

tot exp,i exp,i

i
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As shown in Fig. 5, the predicted values are in good agreement with 
the experimental measurements. This confirms the accuracy of the 
chosen model. 

Table 3. Full factorial design consisted of experiments for the study of operating parameters with experimental and predicted results. 

Run 
Feed flowrate 

(Q) (m3/s) 

Solid content 

(X) (%) 

Baffle length 

(L) (m) 

Overflow responses 

Velocity (m/s) Flow rate (m3/s) Cut-size (μm) 

Actual1 Pred.2 Actual3 Pred.4 Actual5 Pred.6 

1 0.05 5 0 0.008342 0.021348 0.003984 0.010196 37.4251 38.0881 

2 0.05 15 0 0.008388 0.007354 0.004006 0.003512 37.5058 37.7285 

3 0.05 25 0 0.008418 0.003550 0.004021 0.001700 37.5583 36.6725 

4 0.05 5 1.95 0.008601 0.010190 0.004108 0.004870 37.8762 35.7813 

5 0.05 15 1.95 0.008627 0.064815 0.004120 0.030955 37.9210 43.8628 

6 0.05 25 1.95 0.008654 0.028740 0.004133 0.013730 37.9675 34.1206 

7 0.05 5 3.9 0.009974 0.015762 0.004763 0.007528 40.1397 41.5716 

8 0.05 15 3.9 0.010004 0.045150 0.004778 0.021560 40.1869 34.0223 

9 0.05 25 3.9 0.010050 0.059416 0.004800 0.028377 40.2592 44.9918 

10 1.55 5 0 0.456209 0.511862 0.217883 0.244462 179.5739 186.4262 

11 1.55 15 0 0.517756 0.482656 0.247277 0.230514 188.7046 184.0512 

12 1.55 25 0 0.540632 0.520079 0.258203 0.248387 191.9292 189.7303 

13 1.55 5 1.95 0.486274 0.468455 0.232242 0.223732 184.1219 182.1080 

14 1.55 15 1.95 0.497385 0.528252 0.237548 0.252290 185.7593 188.1741 

15 1.55 25 1.95 0.496078 0.483030 0.236924 0.230692 185.5679 185.1670 

16 1.55 5 3.9 0.590958 0.553124 0.282238 0.264169 198.7421 193.9037 

17 1.55 15 3.9 0.472767 0.477000 0.225791 0.227813 182.1004 184.3390 

18 1.55 25 3.9 0.596296 0.629897 0.284787 0.300835 199.4437 202.0436 

19 3.05 5 0 0.845316 0.776657 0.403718 0.370927 228.6734 221.1581 

20 3.05 15 0 0.800000 0.836133 0.382075 0.399332 223.7885 228.2191 

21 3.05 25 0 0.874727 0.907253 0.417765 0.433299 231.7590 234.8437 

22 3.05 5 1.95 0.759226 0.795839 0.362602 0.380088 219.2473 223.3561 

23 3.05 15 1.95 1.031372 0.944318 0.492577 0.451000 247.2147 238.8581 

24 3.05 25 1.95 0.882352 0.932793 0.421406 0.445496 232.5487 236.7965 

25 3.05 5 3.9 0.895205 0.927251 0.427545 0.442850 233.8704 237.2769 

26 3.05 15 3.9 0.888888 0.939809 0.424528 0.448848 233.2222 237.1482 

27 3.05 25 3.9 1.209370 1.126403 0.577588 0.537964 263.1308 255.7983 

1 Calculated by CFD model 
2 Calculated by Eq. (18) 

3 Calculated by Eq. (16) 
4 Calculated by Eq. (19) 

5 Calculated by Eq. (21) 
6 Calculated by Eq. (22) 

 
Fig. 3. Bench scale hydraulic classifier used in validation study: (1) classification 
vessel, (2) overflow vessel, (3) pulp inlet, (4) control fuse, (5-7) pulp control valves, 

(8-10) pulp tanks and connections, and (11) hydraulic pump. 
Table 4. Experimental design matrix and results for validation study 

run 

Pulp 

density, D 

(kg/m3) 

Pulp flowrate, 

Q 

(lit/min) 

Overflow velocity (m/s) 

Actual Predicted 

1 1210 14 0.632 0.64 

2 1210 10 0.3491 0.352 

3 1210 5 0.177 0.19 

4 1094 14 0.6095 0.59 

5 1094 10 0.328 0.319 

6 1094 5 0.137 0.113 

7 1045 14 0.58 0.5845 

8 1045 10 0.311 0.333 

9 1045 5 0.1038 0.13 

3.2. Statistical analysis of CFD modeling results 

Since particle size is not directly employed as an operating variable, 
the feed flowrate and solid content were converted into different states 
as CFD modeling inputs. Feed flowrate can be easily converted to feed 
velocity as follows: 

12 
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f

f

Q
V

A
(12) 

where Vf is the feed velocity (m/s), Q represents the feed flowrate 
(m3/s) and Af denotes the cross sectional area of feed inlet (m2). Solids 
content directly affects the pulp rheology, therefore, it can be stated as 
two parameters of feed density and viscosity, as well. Solid content can 
be calculated on the basis of density value of the feed components, i.e. 
particles and water, using Eq. (13) [6]: 

S(D W)
X

D(S W)
(13) 

where S, D and W are density values for solid phase, pulp and water, 
respectively. In this study, particles and water densities were 2500 kg/m3

and 1000 kg/m3, respectively. Pulp viscosity can be calculated using 
Arrhenius equation as follows [44]: 

p w exp (k. ) (14) 

where μp is the pulp viscosity, μw is the water viscosity (0.001 kg/ms at 
ambient temperature), k represents a constant value (0.338 in this 
study), and φ stands for the volumetric solid content in pulp. φ per unit 
volume of pulp is calculated as follows [6]: 

XD

100S
(15) 

Now, the experimental matrix given in Table 3 can be converted into 
an easier design shown in Table 5. Parameters given in Table 5 are used 
as input variables for CFD modeling process. CFD modeling results are 
shown in Table 5. 

Fig. 4. Comparison between experimental data and simulation results during 
validation study. 

                                              Table 5. Experimental design with variables translated to CFD modeling language 

Run Vf (m/s) D (Kg/m3) μp (10-3 Kg/ms) L (m) 
Overflow velocity as response, 

Vo (m/s) 

1 0.009758 1.031 1.007 0 0.008342 

2 0.009758 1.099 1.022 0 0.008388 

3 0.009758 1.177 1.041 0 0.008418 

4 0.009758 1.031 1.007 1.95 0.008601 

5 0.009758 1.099 1.022 1.95 0.008627 

6 0.009758 1.177 1.041 1.95 0.008654 

7 0.009758 1.031 1.007 3.9 0.009974 

8 0.009758 1.099 1.022 3.9 0.010004 

9 0.009758 1.177 1.041 3.9 0.010050 

10 0.3026 1.031 1.007 0 0.456209 

11 0.3026 1.099 1.022 0 0.517756 

12 0.3026 1.177 1.041 0 0.540632 

13 0.3026 1.031 1.007 1.95 0.486274 

14 0.3026 1.099 1.022 1.95 0.497385 

15 0.3026 1.177 1.041 1.95 0.496078 

16 0.3026 1.031 1.007 3.9 0.590958 

17 0.3026 1.099 1.022 3.9 0.472767 

18 0.3026 1.177 1.041 3.9 0.596296 

19 0.5954 1.031 1.007 0 0.845316 

20 0.5954 1.099 1.022 0 0.800000 

21 0.5954 1.177 1.041 0 0.874727 

22 0.5954 1.031 1.007 1.95 0.759226 

23 0.5954 1.099 1.022 1.95 1.031372 

24 0.5954 1.177 1.041 1.95 0.882352 

25 0.5954 1.031 1.007 3.9 0.895205 

26 0.5954 1.099 1.022 3.9 0.888888 

27 0.5954 1.177 1.041 3.9 1.209370 

It should be noted that the experimental matrix in Table 5 cannot be 
used as an input to analysis the software; because it is not actually a 
statistically designed experimental program. Therefore, experimental 
design shown in Table 3 is used for interpretation. According to the 
design matrix given in Table 3, 27 tests were conducted following the 
sequence defined by Design-Expert Software v.7.1.5 (DX7).  

Pulp velocity in overflow outlet can be easily converted to pulp 
flowrate by using Eq. (16): 

o o oQ V A (16) 

where Qo is the overflow rate (m3/s), Vo is the overflow velocity as 
predicted by CFD modeling (m/s) and Ao is the cross sectional area of 
overflow outlet (0.48 m2). Pulp flowrate values calculated by Eq. (16) are 
listed in Table 3. Then, two responses were evaluated, i.e., the overflow 
velocity and flowrate. A nonlinear equation was developed to predict the 
responses as a function of independent variables [40, 45, 46]. In general, 
the experimental data obtained from the designed experiment is 
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analyzed by nonlinear regression procedure using the following multi-
variable equation: 

0 i i ij i jy b b x b x x (17) 

where y is the predicted response, b0 represents the constant 
coefficient, bi is the linear coefficients, bij denotes the nonlinear 
coefficients, xi and xj are coded values of the independent process 
variables, and  is the residual error. The values of the coefficients were 
calculated by using DX7 software. The best fitted model equation was 
obtained for overflow pulp velocity as follows: 

1 2

1 2 1 2

1 1 2 1 1 2 2 2

1 1 2 1 1 2 2 2

1 1 2 1 1 2 2 2

Overflow velocity 0.479 0.469Q 0.039Q

0.027X 0.008X 0.027L 0.014L

0.027Q X 0.021Q X 0.008Q X 0.013Q X

0.027Q L 0.015Q L 0.014Q L 0.009Q L

0.013X L 0.001X L 0.019X L 0.056X L

(18) 

and for overflow rate in below: 

1 2

1 2 1 2

1 1 2 1 1 2

2 2 1 1 2 1

1 2 2 2 1 1

2 1 1 2 2 2

Overflow rate 0.229 0.224Q 0.018Q

0.013X 0.004X 0.013L 0.007L

0.013Q X 0.01Q X 0.004Q X

0.006Q X 0.013Q L 0.007Q L

0.007Q L 0.005Q L 0.006X L

0.001X L 0.009X L 0.027X L

(19) 

where indices 1 and 2 show the lower and upper domains of levels 
respectively, i.e. values which are smaller and larger than mid-level of 
each variable, respectively. Model Eqs. (18) and (19) were used to 
evaluate the influence of process variables on the overflow velocity and 

flowrate. Analysis of Variance (ANOVA) was performed to assess the 
models significance. ANOVA results (Tables 6 and 7) of the regression 
models suggested that both models were highly significant, as was 
evident from Fisher's F-test (F model = 151.68) with a very low 
probability value (p model < 0.0001). Significance of each variable was 
also determined by p-values, as listed in Tables 6 and 7. “Prob > F” values 
of less than 0.05 (for confidence interval of 95%) indicate that the model 
terms are significant. As seen in Table 6, all single and multiple effects 
were significant terms for the overflow velocity model. Similar results 
were expected for overflow rate model since this response is actually the 
overflow velocity multiplied by a constant value, i.e. cross sectional area 
of overflow outlet. Table 7 shows that all single and multiple effects were 
also significant model terms for overflow rate response. 

Normal probability plot of the residuals is a useful tool to be used for 
detecting the normal distribution, the independency of model errors, 
and the homogeneity of the variance error [47]. Normal probability of 
the residuals of overflow velocity presented in Fig. 5 showed almost no 
serious violation of the assumptions underlying the analyses that 
confirmed the normality assumptions and independency of the 
residuals. All of above considerations confirmed the adequacy of the 
developed relationship. A high value of R2 (98.73%) indicates high 
correlation between the measured and predicted values of the response. 
Moreover, a closely high value of the adjusted correlation coefficient 
(Adj R2 = 98.08%) also shows a high significance for the model. On the 
other hand, total variation of about 98% for the overflow velocity was 
attributed to the independent variables, and only about 2% of total 
variation could not be explained by developed model.  

Table 6. Analysis of variance (ANOVA) of the full factorial model to predict overflow velocity 

Source 
Sum of Squares df Mean Square F Value 

p-value 
Prob > F 

Model 7.574336 18 0.420796 151.6795 < 0.0001 significant 

Feed flowrate (Q) 7.339871 2 3.669936 1322.858 < 0.0001 

Solid content (X) 0.037387 2 0.018694 6.738302 0.0033 

Baffle length (L) 0.048749 2 0.024374 8.78594 0.0008 

QX 0.042632 4 0.010658 3.841728 0.0109 

QL 0.041283 4 0.010321 3.720199 0.0126 

XL 0.064414 4 0.016104 5.80468 0.0011 

Residual 0.097099 35 0.002774 

Lack of Fit 0.097099 8 0.012137 

Pure Error 0 27 0 

Cor Total 7.671435 53 

Std. Dev. 0.052671 R-Squared 0.987343 

Mean 0.478588 Adj R-Squared 0.980833 

C.V. % 11.00553 Pred R-Squared 0.969871 

PRESS 0.231134 Adeq Precision 37.49812 

This fact was also confirmed from the predicted vs. observed values 
plot for the overflow velocity in Fig. 6. The Pred R2 was 96.99%, implying 
that it could explain variability in predicting new observations. This was 
in a reasonable agreement with the Adj R2 of 98.08%. Adeq precision 
shows the signal to noise ratio; a ratio of greater than 4 is a desirable 
value [40]. In this investigation, the ratio was 47.50 (Table 5), indicating 
an adequate signal. The model can be used to navigate the design space. 
In case of overflow rate, a similar model description can also be 
presented, as seen from the model precision parameters listed in Table 
6 and the normal probability and prediction plots shown in Fig.s 7 and 
8, respectively. 

3.3. Model construction for overflow cut-size 

Introducing the equations of motion for individual particles moving 
through a fluid is usually complicated and simplifications have to be 
considered. There are many factors affecting the motion equations 
including particles frequency, size, shape, density, hydrophobicity, 
roughness, and fluid characteristics such as viscosity, motion direction, 
etc. Therefore, it is commonly preferred to construct such equations by 
estimation of all fluid forces acting on the particle, and equating them 
to the total fluid force. Therefore, several models have been developed 
to simulate two phase flows of fluid-solid systems. However, there is a 
general rule governing all modeling approaches that carrying the 
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capacity of fluid that is increased by fluid flowrate; in other word, as the 
fluid velocity increases, the coarser particles are carried with the fluid. 
In this study, the variation of classifier cut-size values against the 
measured overflow rates was plotted, and the best fitted equation was 
determined for prediction of the cut-size values at experimental levels 
(Table 3). The cut-size vs. overflow rate plot is shown in Fig. 9, 
describing that cut-size can be estimated using an exponential equation 
as follows, 

0.3919

50 od 326.27 Q (20) 

Since the modeling process is based on CFD approach which uses the 
overflow velocity as the process response, the measured cut-sizes were 
plotted vs. overflow velocity values calculated by Eq. (16) (Fig. 10) and 
the prediction equation was determined as follows, 

0.3919

50 od 244.24 V (21) 

Table 7. Analysis of variance (ANOVA) of the full factorial model to predict overflow rate. 

Source Sum of Squares df Mean Square F Value 
p-value 
Prob > F 

Model 1.727677 18 0.095982 151.6797 < 0.0001 significant 

Feed flowrate (Q) 1.674197 2 0.837098 1322.86 < 0.0001 

Solid content (X) 0.008528 2 0.004264 6.738341 0.0033 

Baffle length (L) 0.011119 2 0.00556 8.785917 0.0008 

QX 0.009724 4 0.002431 3.841709 0.0109 

QL 0.009417 4 0.002354 3.720237 0.0126 

XL 0.014692 4 0.003673 5.804605 0.0011 

Residual 0.022148 35 0.000633 

Lack of Fit 0.022148 8 0.002768 

Pure Error 0 27 0 

Cor Total 1.749825 53 

Std. Dev. 0.025155 R-Squared 0.987343 

Mean 0.228571 Adj R-Squared 0.980833 

C.V. % 11.00552 Pred R-Squared 0.969871 

PRESS 0.052721 Adeq Precision 37.49814 

Fig. 5. Normal probability plot of the residuals for overflow velocity model. 

Fig. 6. Relation between observed and predicted overflow velocity values. 

Fig. 7. Normal probability plot of the residuals for overflow rate model. 

Fig. 8. Relation between observed and predicted overflow rate values. 
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Fig. 9. Variation of measured cut-size vs. measured overflow rate. 

Fig. 10. Variation of measured cut-size vs. calculated overflow velocity. 

Eq. (21) was used for calculation of cut-size of experimentally 
designed conditions and the results are shown in Table 3. Now, a 
prediction model for estimation of product cut-size can be developed 
based on the studied operating parameters by nonlinear regression 
procedure. The best fitted model equation proposed by DX7 software is 
as follows: 

1 2

1 2 1 2

1 1 2 1 1 2

2 2 1 1 2 1

1 2 2 2 1 1

2 1 1 2 2 2

Cut-size 153.93 115.4Q 34.5Q

2.86X X 3.17L 1.91L

2.8Q X 1.9Q X Q X

1.92Q X 2.12Q L 1.46Q L

1.29Q L 1.38Q L 0.65X L

0.23X L 2.08X L 5.94X L

(22) 

The significance of model Eq. (22) was tested by ANOVA as given in 
Table 8. ANOVA results suggested that the proposed model is highly 
significant with a high F model of 729.96 and a very low probability p-
value. Table 8 reveals that all effects, except the solid content and baffle 
length interaction, are the significant terms for product cut-size model. 
Normal probability of the residuals for product cut-size is shown in Fig. 
11. As seen, almost no serious violation of the assumptions underlies the 
analyses that confirmed the normality assumptions and independence 
of the residuals. A high value of determination coefficient (R2 = 99.73%) 
and adjusted correlation coefficient (Adj R2 = 99.60%) show high 
significance of the model. The predicted versus observed values for cut-
size plotted in Fig. 12 confirms the significance of cut-size model. 

Table 8. Analysis of variance (ANOVA) of the full factorial model to predict product cut-size. 

Source Sum of Squares df Mean Square F Value p-value 
Prob > F 

Model 381457.1 18 21192.06 729.9627 < 0.0001 significant 

Feed flowrate (Q) 378913 2 189456.5 6525.849 < 0.0001 

Solid content (X) 433.6728 2 216.8364 7.468953 0.0020 

Baffle length (L) 709.845 2 354.9225 12.22534 < 0.0001 

QX 407.6702 4 101.9175 3.51056 0.0164 

QL 282.5065 4 70.62663 2.432742 0.0657 

XL 710.375 4 177.5938 6.117236 0.0008 

Residual 1016.11 35 29.0317 

Lack of Fit 1016.11 8 127.0137 

Pure Error 0 27 0 

Cor Total 382473.2 53 

Std. Dev. 5.388107 R-Squared 0.997343 

Mean 153.9347 Adj R-Squared 0.995977 

C.V. % 3.500255 Pred R-Squared 0.993676 

PRESS 2418.755 Adeq Precision 69.39023 

3.4. Analysis of main effects 

The effects of operating parameters on overflow cut-size values were 
analysed based on overflow velocity. These effects were modelled by 
Eqs. (18) and (22), and were applied to interpret the main effects in 
combination with CFD graphical results. Fig. 13 shows the effect of feed 
pulp solid content on the overflow velocity and cut-size. Due to the 
effect of hindered-settling condition, as the solid content increases, the 
cut size increases as well. Generally, classifiers use two settling 
mechanisms, free settling to increase the influence of particle size on the 
classification and hindered-settling to increase the effect of particle 
density on separation. Free settling refers to the conditions under which 
the particles sink in a classification chamber that contains a fluid of a 

volume significantly larger than that of the particles; thus, particle 
crowding can be considered negligible. For well-dispersed ore pulps, free 
settling is predominant when the mass content of solids is less than 15%. 
As the pulp solid percentage increases, the effect of particle crowding 
becomes more apparent and the settling rate of the particles decreases 
and the pulp behaves as a heavy media which its density is equal to the 
pulp, not the carrier water; therefore, hindered-settling conditions 
become dominant. Due to high density and viscosity of the pulp under 
hindered settling conditions, the resistance to the particles that fall 
down in the classification chamber is mainly caused by the turbulence 
regime, and consequently, the cut size value increases [6]. Fig. 13 also 
shows that the effect of solid content is fairly significant due to the light 
turbulence conditions in classifier chamber as seen in CFD patterns. 
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This effect was also predicted by statistical analyses. As seen in Tables 5 
and 7, the p-values for both the overflow velocity (Table 6) and the cut-
size (Table 8) are higher than that of the other parameters. 

Fig. 11. Normal probability plot of the residuals for overflow cut-size model. 

Fig. 12. Relation between observed and predicted overflow cut-size values. 

Fig. 14 shows the main effect plots for cut-size and overflow velocity 
vs. feed pulp flowrate. As the feed flowrate increases, the overflow 
velocity, and consequently the product cut-size directly increase. In 
general, two reasons can be attributed to the increased cut-size value by 
feed flowrate; as shown in CFD simulated fluid velocity patterns inside 
the classifier chamber, the turbulent regime inside the classifier sorting 
column increases through increasing the feed flow rate, and therefore, 
the free-settling separation condition approaches to the hindered-
settling mechanism. Under hindered-settling conditions, inter-particle 
collisions prevent coarse particles to freely settle downward the 
underflow outlet. Moreover, particles retention time also decreases with 
increasing of flowrate, so preventing the effective separation of particles. 

X = 5%         X = 15%                   X = 25% 
Fig. 13. Effect of feed pulp solid content on overflow velocity and cut-size. 
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Q = 0.05 m3/s       Q = 1.55 m3/s          Q = 3.05 m3/s 
Fig. 14. Effect of feed pulp flowrate on overflow velocity and cut-size. 

The effect of baffle length on overflow responses is shown in Fig. 15. 
Baffle length has a fair but negative effect on the overflow velocity and 
cut-size. Fluid velocity patterns inside the classifier simulated for 
different baffle lengths are also shown in Fig. 15. As seen, the turbulency 
inside the column decreases as the baffle length is increased. These 
patterns clearly show the positive action of baffle to control the 
turbulent environment. Baffle decreases the turbulency by breaking and 
dispersing the pulp stream lines. Long baffle plate decreases the 
overflow velocity and product cut-size by moderating the turbulence 
regime into the sorting chamber. 

3.5. Analysis of interaction effects  

The three-dimensional (3D) plots of the model response vs. two 
independent variables varying within their experimental levels while 
maintaining other variables are at their mid-levels can give useful 
information about their relationships [48]. Therefore, in order to gain 
better understanding of individual effects of the studied operating 
variables and their corresponding interaction effects on other variables, 
the 3D plots of the overflow responses were provided based on the 
nonlinear models proposed by DX7 software. Since the models in this 
study had three independent variables, only one variable was kept 
constant at its mid-level for each plot. The influence of the studied 
operating variables on the overflow velocity and cut-size is visualized in 
Fig.s 16 and 17. As seen, plots for both responses show similar patterns. 
It should be noted that analyzing the effects based only on the shape of 
the plots is not true and ANOVA results are also necessary for 
interpreting the interaction effects. Referring to ANOVA tables, it can 
be found that all interaction effects on the overflow velocity are 
significant (Table 6) whereas in case of the overflow cut-size, the 

interaction between feed flowrate and baffle length is not high enough 
to be considered significant (p value > 0.05; Table 8); thus, it can be 
neglected. As shown in the main effect plots, the feed flowrate and solid 
content had positive effects on the overflow velocity and cut-size. 
Therefore, it is expected that the interactions follow a similar trend. Fig.s 
16 and 17 show that the overflow responses increase by simultaneously 
increasing of the feed flowrate and solid content. The response plot of 
feed flowrate and baffle length indicates that the responses increase by 
feed flowrate in presence and absence of baffle plate; this means that the 
effect of feed flowrate is superior to baffle effect. However, at constant 
feed flowrates, a nonlinear trend is observed for baffle length effect, as 
seen for the solid content effect in feed flowrate and solid content 
response plot. This trend may be attributed to the interaction effect of 
solid content and baffle length. It was shown in main effect plots in 
which the overflow responses decreased as the length of baffle plate was 
increased. However, Fig.s 16 and 17 show a slight increase of overflow 
responses when feed solid content exceeds about 20%. At high solid 
content, these conditions are rarely observed in practice, as claimed by 
technical engineers, and hindered-settling condition becomes the 
dominant effect especially in classifier equipped by a full length baffle. 
When the solid content increases, the long baffle prevents the 
continuous swarm of particles to freely flow inside the column. 
Therefore, stream lines concentrate above the baffle plate and are 
directed to the overflow outlet. This will increase the velocity of 
overflow. Therefore, it can be concluded that baffle plays its positive role 
under free-settling condition which is initially considered in original 
layout of Zarand Coal Washing Plant, i.e. an operating solid content of 
about 15%. 
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L = baffle removed        L = 1.95 m           L = 3.9 m 
Fig. 15. Effect of baffle length on overflow velocity and cut-size. 
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Fig. 16. The response plot showing the effects of operating variable on overflow velocity. 

Fig. 17. The response plot showing the effects of operating variable on overflow cut-size.

4. Conclusions 

Today, computational fluid dynamics and experiments design are 
known as two analyses tools that engineers can apply them for 
experimental interpretation and process optimization. Each method has 
its own advantages and limitations. A CFD-DOE combined modeling 
method was developed in present study to provide the condition in 
which engineers can benefit from the advantages of both modeling 
methods. The method consists of two general steps: numerical 
prediction of process response values using CFD method, and 
development of a statistical parametric model to predict the practical 
response values under real industrial conditions. Validation of suggested 
method was also confirmed by hydrodynamic simulation of an 
industrial hydraulic classifier in Zarand Coal Washing Plant (Zarand, 
Iran). Prediction of the overflow cut-size of studied classifier, as the 
process response, was carried out using the parametric model developed 
by the proposed model. The model equation provided a fitting 
agreement of about 70% between the predicted and experimentally 
measured cut-size values. This relatively low but acceptable modeling 

precision can mainly be attributed to the industrial target system 
simulated in this study. It is well known that the coal processing systems 
are usually involved with difficulties when they are parametrically 
simulated. This is due to the extremely varying properties of coal feed 
into the system. Therefore, validation of proposed modeling method 
using the obtained data from a non-coal system may lead to more 
precise results. In addition, CFD modeling in this paper is conducted 
using predefined functions available in Fluent software, and no extra 
codes were generated for modeling. Thus, it is expected that more 
reliable results are obtained by developing specified coded to the studied 
system. Although further studies are required to fully understand the 
benefits and applicability of the proposed modelling method, it seems 
to be a useful and promising tool to simulate every type of devices that 
work based on fluid flows. 
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