

Two Strategies Based on Meta-Heuristic Algorithms for

Parallel Row Ordering Problem (PROP)

Mansoureh Maadi1, Mohammad Javidnia2, Rasoul Jamshidi1

1. Department of Industrial Engineering, Damghan University, Damghan, Iran
2. School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

(Received: September 29, 2016; Revised: April 22, 2017; Accepted: May 2, 2017)

Abstract

Proper arrangement of facility layout is a key issue in management that influences

efficiency and the profitability of the manufacturing systems. Parallel Row Ordering

Problem (PROP) is a special case of facility layout problem and consists of looking

for the best location of n facilities while similar facilities (facilities which has some

characteristics in common) should be arranged in a row and dissimilar facilities

should be arranged in a parallel row. As PROP is a new introduced NP-hard

problem, only a mixed integer programming model is developed to formulate this

problem. So to solve large scale instances of this problem, heuristic and meta-

heuristic algorithms can be useful. In this paper, two strategies based on genetic

algorithm (GA) and a novel population based simulated annealing algorithm (PSA)

to solve medium and large instances of PROP are proposed. Also several test

problems of PROP in two groups with different sizes that have been extracted from

the literature are solved to evaluate the proposed algorithms in terms of objective

function value and computational time. According to the results, in the first group of

instances, both algorithms almost have equal performances, and in the second group

PSA shows better performance by increasing the size of test problems.

Keywords

Facility layout problem, Parallel row ordering problem, Genetic algorithm,

Population based simulated annealing algorithm.

 Corresponding Author, Email: javidnia.mohammad@gmail.com

Iranian Journal of Management Studies (IJMS) http://ijms.ut.ac.ir/

Vol. 10, No. 2, Spring 2017 Print ISSN: 2008-7055

pp. 467-498 Online ISSN: 2345-3745

DOI: 10.22059/ijms.2017.216663.672285

Online ISSN 2345-3745

468 (IJMS) Vol. 10, No. 2, Spring 2017

Introduction

The facility layout problem (FLP) is concerned with finding the

optimal and best facility arrangement in a given layout. Some

examples of the FLP applications can be related to layouts in a library,

hospital or service center, an equipment assignment, the construction

of the new manufacturing units, or a workshop organization.

According to the paper of Drira et al. (2007), facility layout problems

are categorized into different problems depending on factors including

the workshop characteristics, how the problem is addressed, and the

approaches used to solve the problem. One of these categories that is

based on layout configuration is named multi-row problems. In the

literature, until now, different multi-row problems have been proposed

and different algorithms have been used to solve them. These

problems in two rows are Double Row Layout Problem (DRLP),

Corridor Allocation Problem (CAP), and Parallel Row Ordering

Problem (PROP) which are extensions of another category of facility

layout problems named Single Row Facility Layout Problem (SRFLP)

with different conditional assumptions. Afterwards, SRFLP, DRLP,

CAP, and PROP are described, also a summary in Table 1, related

methods for modelling and different proposed algorithms of the

literature for solving these problems are declared. It is notable that

these problems are NP-hard.

 Single row facility layout problem (SRFLP) is a main problem that

has attracted the notice of many researchers in recent years (Amaral,

2013b). SRFLP is concerned with arranging a number of rectangular

facilities with different length on one side of a straight line. The aim

of this problem is minimizing the weighted sum of the distance

between all facility pairs. Numerous applications of SRFLP are

mentioned in the literature including arrangement of rooms in

hospital, departments in office building or in supermarkets (Heragu &

Kusiak, 1988), arrangement of machines in flexible manufacturing

systems (Picard & Queyranne, 1981), assignment of files to disk

cylinders in computer's storage (Anjos et al., 2005). After introducing

SRFLP by Simmons in 1969, researchers have proposed different

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 469

exact algorithms to solve this problem, but because these algorithms

only were able to solve small instances with up to 42 facilities, in

recent years, different heuristic and meta-heuristic algorithms have

been proposed to solve medium and large instances of SRFLP.

The double row layout problem (DRLP) consists of arranging

rectangular facilities of different widths on both side of a corridor in

order to minimize the total cost of material handling. In this problem,

no facilities are restricted to any row. In 2010, Chung and Tanchoco

proposed DRLP and formulated it as a mixed integer programming

(MIP) problem for which only small instances may be solved

optimally. Also, an application of DRLP within a fabrication line

producing liquid crystal display (LCD) was described in this paper.

Until now, different meta-heuristic methods have been proposed to

solve medium and large instances of DRLP in the literature.

Corridor allocation problem (CAP) that was introduced by Amaral

(2012), explores an arrangement of facilities along two horizontal

lines that are parallel to x-axis of Cartesian coordinate system named

central corridor. The aim of CAP is the minimization of the total

communication cost among facilities regarding two conditions: (1) No

space is permitted between two adjacent facilities. (2) The leftmost

point of the arrangement on both line of a corridor must have zero

abscissa. In Amaral’s (2012) study, a mixed integer programming

model is proposed for problem instances of moderate size. After that,

different meta-heuristic algorithms have been proposed to solve CAP

in the literature. The applications of CAP include arrangement of

rooms in office buildings, hospitals, shopping centers, and schools

(Amaral, 2012).

Parallel row ordering problem (PROP) considers arrangement of N

facilities along two rows and is proposed by Amaral (2013b). Assume

 be a partition of N, such that

 and . Let

R= be a set of two rows. A one-to-one assignment of the set

 is done to set R so that the facilities pertaining to the subset

 should be arranged along row r (for some r, 1≤r≤2). The objective

of this problem is to order facilities in two rows with the aim of

minimizing a cost function of the x-distances between facilities.

470 (IJMS) Vol. 10, No. 2, Spring 2017

 PROP has a number of practical applications, including

arrangement of facilities along two parallel straight lines on a floor

plan and in the construction of multi-floor buildings (Amaral, 2013b).

Figure 1 shows arrangement of facilities along two parallel straight

lines on a floor plan (Amaral, 2013b).

Continue Table 1. Review of studies on facility layouts

Problem Method Researchers

SRFLP

Mixed integer programming
Love & Wong (1976), Amaral (2006a),

Amaral (2008)

Nonlinear programming Heragu & Kusiak (1991)

Dynamic programming
Picard & Queyranne (1981), Kouvelis

& Chiang (1996)

Cutting planes Amaral (2009)

Semidefinite programming

(SDP)

Anjos et al. (2005), Anjos & Vannelli

(2008), Anjos & Yen (2009),

Hungerländer & Rendl (2013)

Branch and Bound Simmons (1969)

Branch and Cut Amaral & Letchford (2013)

Path Relinking Kothari & Ghosh (2012a)

Greedy Search
Kumar et al. (1995), Djellab &

Gourgand (2001)

Local Search Palubeckis (2015)

Lin-Kernighan Kothari & Ghosh (2013b)

Simulated Annealing

Romero & Sanchez-Flores (1990),

Heragu & Alfa (1992), de Alvarenga et

al. (2000), Palubeckis (2017)

Tabu Search

de Alvarenga et al. (2000),

Samarghandi & Eshghi (2010), Kothari

& Ghosh (2013c)

Ant Colony Optimization Solimanpur et al. (2005)

Scatter Search

Satheesh Kumar et al. (2008), Kothari

& Ghosh (2014c), Akbari & Maadi

(2011), Kunlei et al. (2011)

Particle Swarm Optimization Samarghandi et al. (2010)

Genetic Algorithm
Ficko et al. (2004), Datta et al. (2011),

Kothari & Ghosh (2014b)

Cuckoo Optimization

Algorithm
Maadi et al. (2016)

Forest Optimization algorithm Maadi et al. (2016)

Hybrid Algorithms

Braglia (1996), Teo & Ponnambalam

(2008), Ozcelik (2012), Guan & Lin

(2016)

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 471

Continue Table 1. Review of studies on facility layouts

Problem Method Researchers

DRLP

Mixed integer programming

Chung & Tanchoco (2010), Zhang &

Murray (2012), Amaral (2013a), Anjos

et al. (2016)

Semidefinite programming

(SDP)
Anjos et al. (2016)

Local Search Murray et al. (2013)

Hybrid Algorithms Zuo et al. (2014)

CAP

Mixed integer programming Amaral (2012)

Simulated Annealing Ahonen et al. (2014)

Tabu Search Ahonen et al. (2014)

Scatter Search Ghosh & Kothari (2012)

Hybrid Algorithms Ghosh & Kothari (2012)

PROP Mixed integer programming Amaral (2013b)

Fig. 1. Arrangement of facilities along two parallel straight lines on a floor plan (Amaral, 2013b)

Moreover, the difference between PROP, DRLP, and CAP is

investigated. In DRLP and CAP, facilities are arranged along two

parallel rows, in contrast to PROP, they are not restricted to any row.

A difference between DRLP, CAP, and PROP is that PROP and CAP

assume that the arrangement in both rows starts from a common point

and no space is permitted between two adjacent facilities, while the

DRLP does not make such assumptions. Also, in DRLP the distance

between two rows is set to zero while it is not true in PROP and CAP.

As it can be seen in Table 1, only one paper about PROP has been

presented in the literature, while this paper introduces the PROP and

472 (IJMS) Vol. 10, No. 2, Spring 2017

provides a mixed integer programming (MIP) model that is able to

solve small instances of PROP up to 23 facilities. In this paper,

instances are commonly used as benchmark instances for the SRFLP

to perform computational experiments. Using CPLEX12.4, the

proposed MIP solves all instances to optimality.

Because PROP is an NP-hard problem, like other multi-row facility

layout problems, to solve medium and large instances, a meta-

heuristic algorithm is needed, so this paper can be a starting point to

apply meta-heuristic algorithms to solve medium and large instances

of PROP.

GA and SA as two basic and efficient meta-heuristic algorithms

have shown great performance to solve different facility layout

problems including SRFLP. In the literature, different GA and SA

based algorithms are applied to solve SRFLP, so that these algorithms

have shown better performance in comparison to other meta-heuristic

algorithms of the literature. Hence, in this paper a genetic algorithm

and a novel population based simulated annealing algorithm are

proposed to solve medium and large instances of the PROP.

The rest of paper is organized as follows: In problem description

section, the problem is described. Then, in meta-heuristic algorithms

section proposed algorithms based on genetic algorithm and a novel

population based simulated annealing algorithm are presented. In

computational experiments section the proposed algorithms are

evaluated on various instances with different sizes of n≤23 and n>23

followed by the conclusions of the paper in conclusion.

Problem Description

In this section, we describe the mixed integer programming

formulation of the PROP proposed by Amaral (2013b).
The parameters and indices are:
 Number of facilities
 Number of facilities with some characteristic in common
 The set of first row facilities;
 The set of second row facilities;
 The set of all facilities;
 Index for facilities
 The length of facility ;
 The average daily traffic (or flow) between facilities and ;

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 473

We need the following vectors:

 A vector

 such that

 when facility is to the left

of facility and
 otherwise.

 A vector

 such that

 when facility is to the left

of facility and
 otherwise.

 A vector

 such that

 represents the x-distance

between the centers of two facilities and placed at Row 1.

 A vector

 such that

 represents the x-distance

between the centers of two facilities and placed at Row 2.

 A vector

 such that

 represents the x-distance

between the centers of facility placed at Row 1 and facility placed at Row

2.

Define the following polytopes:

Then, a mixed integer programming formulation of the PROP is

given by:

 (1)

s.t:

 (2)

 (3)

474 (IJMS) Vol. 10, No. 2, Spring 2017

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

Constraints (2) and (3) specify the x-distances between facilities of

Row 1. In Row 2, Constraints (7) and (8) determine the x-distances

between pairs of facilities and x-distances between two facilities from

different rows are calculated in Constraints (12) and (13). In above

formulations, Constraints (4) and (9) fortify that, minimum x-distance

between two facilities in one row equals the sum of their half-lengths.

Constraints (5) and (6) guarantee that for Row 1, a
1
 is an incidence

vector of a linear ordering, while Constraints (10) and (11) guarantee

that for Row 2, a
2
 is an incidence vector of a linear ordering.

The important point about this problem is that because the ordering

of the PROP is only in one dimension of x-axis, the other components

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 475

of distance do not change between any two facilities. In fact, only x-

distance between facilities is regarded in PROP.

Meta-Heuristic Algorithms

Regarding applications of different meta-heuristic algorithms in

different areas of problem optimization such as inventory control

(Orand et al., 2015), design of integrated logistics network (Yadegari

et al., 2015), project scheduling (Zareei & Hassan-Pour, 2015), and

parcel delivery services (Bahrami et al., 2016), in this section two

proposed meta-heuristic algorithms including Genetic Algorithm (GA)

and a Population-based Simulated Annealing (PSA) algorithm are

applied to solve PROP. In solution representation section, the

representation used for solutions of two algorithms is explained; then,

to generate different and efficient initial population of two proposed

algorithms, two procedures are introduced in generating initial

population section. After that, two proposed algorithms are described

in proposed genetic algorithm section and proposed population-based

simulated annealing algorithm section.

Solution Representation

In this paper, a solution is represented by a vector of n elements that

first t elements are related to facilities which should be arranged in the

first row and the next (n-t) elements represent the facilities that should

be placed in the second row. The representation of a solution of two

algorithms with n=10 and t= [

] = 3 is depicted in Figure 2.

Fig. 2. A solution representation

It is notable that in PROP, at the beginning, the first t facilities

(facilities 1, 2 … t) should be selected, hence, these t facilities cannot

be exchanged with facilities in the parallel row and only their ordering

476 (IJMS) Vol. 10, No. 2, Spring 2017

can be permuted in the first row. Thus, other n-t facilities are restricted

to the parallel row and only their ordering can be changed in PROP to

achieve a better solution. Regarding solution representation, the cost

function of two proposed algorithms is Equation (1).

Generating Initial Population

To generate initial population of two algorithms, two procedures are

applied in this paper. In the first procedure, using Theorem 1 of the

paper of Samarghandi and Eshghi (2010) to solve SRFLP, one

solution is created. In this theorem for sorting facilities in a single

row, it is assumed that the cost function coefficients of the problem

are constant numbers (cij=c). now for a number of facilities such as

facilities number 1 to number , if we sort them in non-descending

order in a way that the shortest facility is denoted by 1 and the longest

one by n, the optimal solution when n is an odd number is shown in

Figure 3 and for an even number of n the optimal solution is displayed

in Figure 4. Using this theorem for two rows of the problem

separately, a solution is created. The second procedure is randomly

generating permutations in each row. In this procedure, at the

beginning, the first t facilities are selected and laid in random ordering

in the first t elements of a solution array and then other n-t facilities

are randomly placed in the remaining elements of the solution. Using

random permutation strategy to generate initial population guarantees

a good diversification of the initial solutions. These two procedures

assure that the search initiates in feasible space. Using two procedures,

the initial population is created and the operators of algorithms can be

started.

Fig. 3. Optimal solution for odd number of n

Fig. 4. Optimal solution for even number of n

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 477

Proposed Genetic Algorithm

Genetic algorithm (GA) is a stochastic search technique that is based

on the concept of the survival of the fittest according to the Darwinian

Evolution theory (Goldberg & Holland, 1988; Deb & Kalyanmoy, 2001).

In GA, after defining solution representation which is named

chromosome or individual and generating the initial population, this

population is evolved over iterations using the main genetic operators

such as selection, crossover and mutation. The central part of our GA

implementation consists of selection, crossover and mutation

operators on population that is generated using the method explained

in the section above. Roulette wheel selection that is a fitness

proportionate selection is used to select potentially useful solutions for

recombination. A crossover operator with some crossover probability

produces offspring individuals using the selected parent individuals. A

mutation operator also explores the neighborhood of an offspring

individual with another rate of mutation probability. Using these

operators, the process of evolution of the population will be continued

until some termination criteria are met. A predefined maximum

number of iterations or the favorite amount of improvement in the cost

function value are usually the termination criteria of the GA. For more

information about GA, readers are referred to Goldberg et al. (1988).

In the next sections the steps of proposed GA are described.

Crossover operator

Crossover is the operator of generating feasible offspring individuals

using two parent individuals that are selected from the population. In

proposed algorithm, because the first t facilities in the first row cannot

be exchanged with other n-t facilities in the parallel row, one-point

crossover operator is applied. In this operator regarding crossover rate,

after selecting two parents using Roulette wheel selection method, the

point of t is considered in two parents' arrays. The permutation of

facilities in the first row of parent 1 and the permutation of facilities in

the second row of parent 2 produce the array of the first offspring. The

second offspring is created by the permutation of facilities in the

second row of parent 1 and the permutation of facilities in the first

478 (IJMS) Vol. 10, No. 2, Spring 2017

row of parent 2. Figure 5 shows the process of producing two

offspring individuals in a problem with n=10 and t= [

].

Fig. 5. Crossover operator

Mutation operator

Mutation operator in GA is used to hold the genetic diversity of

population in all generations of the algorithm. In proposed GA, at first

with regard to mutation rate, some offspring solutions are selected. In

our proposed mutation operator for each solution, two new solutions

are obtained as follows: Assuming one solution, initially two random

facilities in the first row are swapped and a new solution is generated

without any change in the ordering of the facilities in the parallel row,

then another solution is created by swapping two random facilities in

the parallel row without any change in ordering of facilities in the first

row. New solutions that are feasible solutions are added to the

population. In Figure 6, the performance of mutation operator is

shown with an example.

Fig. 6. Mutation operator

After an iteration of algorithm, the best solutions are selected as the

population of the next iteration until the termination condition is met.

The termination condition of proposed algorithm is considered as the

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 479

number of iterations as a parameter of the algorithm. The pseudo-code

of proposed GA to solve PROP is described in Algorithm1.

Algorithm.1 Proposed GA
Input: number of facilities (n), (t), Flow matrix (F), Facilities length matrix (L),

population size (N), maximum number of iterations (maxiter), mutation rate (pm) and

crossover rate (pc).

Output: An approximation of an optimal solution to the PROP instance.

Compute
Create the initial population init pop of N individuals by using section 3.2.

Set the current population pop ← init pop.

Compute fitness (i) for each

Find best fitness and its chromosome.

for i=0 to maxiter

for j=0 to ncross

P1, P2= select parents (pop)

Offspring (j): permutation of facilities in the first row of P1 and permutation of

facilities in the second row of P2.

Offspring (j+1): permutation of facilities in the second row of P2 and permutation

of facilities in the first row of P1.

j=j+2

End

for k=0 to nmut

Select a random individual from Offspring individuals as O1

Mut[k] ← O1

Mut[k+1]←O1

Select two random numbers from {0, 1… t-1} as t1,t2

Swap (t1, t2, Mut [k])

Select two random numbers from {t, t+1… n-1} as t1,t2

Swap (t1, t2, Mut [k+1])

k=k+2

End

Replace the current population (pop) with the new population.

Compute fitness (i) for each and sort chromosomes according their fitness.

Select the best N chromosomes from pop and reduce the extended population.

Update the best fitness and its chromosome.

i=i+1

End

Return the best chromosome.

Proposed Population-Based Simulated Annealing Algorithm

Simulated Annealing (SA) algorithm that is proposed by Kirkpatrick,

Gellat, and Vecchi (1983), is an iterative and stochastic method

inspired from the annealing process where the metal and other

substances melt and then slowly cool to obtain a strong crystalline

480 (IJMS) Vol. 10, No. 2, Spring 2017

structure. SA starts with an initial solution and subsequently may

proceed to a neighboring solution by a random move, until the

stopping conditions are met. In the literature, SA has attracted the

consideration of many researchers because of not getting stuck in a

local minimal by accepting worse solutions. For more information

about SA, readers are referred to the paper of van Laarhoven and

Aarts (1987), and Kirkpatrick, Gellat, and Vecchi (1983).

The proposed PSA algorithm starts with an initial population of

solutions in contrast to regular SA algorithm that starts with one

solution. Because PROP is a permutation based problem, with

increase in the number of facilities, the solution space will be

increased more and more. So searching for all solutions of the medium

and large instances of PROP is not possible in reasonable time (We

know in a PROP instance with n facilities, t!×(n−t) different solutions

can be created). Because of existing different proposed algorithms in

the literature to solve facility layout problems, the initial solutions of

proposed algorithms are produced randomly using uniform

distribution in order to better search for the solution space. This

process in different papers is introduced as the best method to produce

initial solutions in different types of facility layout problems such as

Hosseini-Nasab and Emami (2013), Kunlei et al. (2011), and

Samarghandi et al. (2010). Also, it helps to get rid of local optimums.

In addition, another method that has been introduced to produce

efficient initial solutions in SRFLP is applied to solve PROP.

Like proposed GA, proposed PSA algorithm starts with generating

initial population according to the section Generating Initial

Population. After that, for each solution of the population, a number of

solutions are produced using neighborhood structure. In this process

for each solution, M neighboring solutions are generated that M is a

parameter of proposed PSA algorithm and should be determined.

Regarding SA mechanism, new produced solutions are accepted or

rejected. In neighborhood structure to perform new neighboring

solutions, the swap operator is used as follows: Consider a solution

with t facilities in the first row and n-t facilities in the parallel row. To

generate one new solution, at first one row is selected randomly and

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 481

two random facilities of the row are swapped. This process will be

continued until M new solutions are generated. After producing

neighboring solutions, SA mechanism is started. The pseudo-code of

the proposed PSA algorithm is described in Algorithm 2.

SA algorithm begins with initial high temperature of T0 and

gradually reduces until final temperature of Tf, through cooling

process. T0 and Tf are parameters of the SA. The initial temperature

should be high enough to allow a move to any neighboring solution

and not a very high temperature that makes the search process

inefficient. The final temperature is usually set to zero. In this paper,

we use a linear cooling schedule, which updates temperature at each

time using the expression of Ti=α×Ti−1, which α is another parameter

of SA that is cooling ratio. In proposed algorithm, the initial

temperature (T0)is considered the cost function value of the worst

solution among initial population and Tf is set to zero. Such as

proposed GA, the stopping condition of proposed PSA algorithm is

considered as the number of iterations as a parameter of the algorithm.

Algorithm 2 Proposed PSA algorithm

Input: number of facilities (n),(t), Flow matrix(F), Facilities length matrix(L), population

size (N),maximum number of iterations (maxiter), number of neighborhoods (M) and

Cooling rate(α).

Output: An approximation of an optimal solution to the PROP instance.

Create the initial population (init pop) of N individuals by using section 3.2.

Set the current population pop ← init pop.

Compute fitness (i) for each .

Find the worst fitness value and copy that to temp //initial temperate

for i=0 to maxiter

for j=0 to N

S ←pop (j)

f ← fitness(S)

for k=0 to M do

S’← S

Generate a random number from{0, 1} as rand

if(rand= =0)

Select two random numbers from {0, 1… t-1} as t1,t2

Swap (t1, t2, S’)

else

Select two random numbers from {t, t+1… n-1} as t1,t2

Swap (t1, t2, S’)

482 (IJMS) Vol. 10, No. 2, Spring 2017

End

f’ ←Compute fitness(S’)

if (f’<f)

S ← S’

else

Generate a random number from[0, 1] as r

if (exp(-(f’-f/temp) > r)

S ← S’

End

End

k=k+1

End

j=j+1

End

Update the best solution.

temp= α ×temp

i=i+1;

End

Return the best solution.

Computational Experiments

The performances of proposed genetic and simulated annealing

algorithms are evaluated on several instances in different sizes

available in the literature. These two proposed algorithms are

implemented in C# and are run on an Intel (R) core (TM) i5-3210

CPU @ 2.5 Gigahertz and 4.00 Gigabytes ram under the Windows 8.1

Operating system.

All PROP instances look like SRFLP instances with an additional

parameter t (Amaral, 2013b). In fact, a PROP instance is composed of

the following data: A positive integer of n, vector of positive integers

 that is the length of the facility i, symmetric cost matrix

of non-negative integers , and an integer number

in [1, n-1] as t.

The instances used in this paper are divided into two general

groups. The first group that is related to the instances with size n≤23

has optimal solution. These instances are introduced and solved by

Amaral (2013b)
1
. Another group of instances with size 23<n≤70 does

not have optimal solution and is tested in this paper for the first time.

1. The instances are available at http://www.gerad.ca/files/sites/Anjos/flplib.html

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 483

All instances used in this group to test the PROP were originally used

in the literature to test SRFLP and are available at the mentioned site.

For each instance, both algorithms are run 20 times. Now, the results

of experiments on different instances in different sizes are described

separately.

Instances with Size n≤23

First, the proposed algorithms are tested on instances in the literature

with size n≤23. As said before, these instances were solved using a

MIP model in the paper of Amaral (2013b) and have optimal solutions

group, Instance s11 is from Simmons (1969), Am15 is from Amaral

(2006), and others are from Amaral (2013b). Throughout the

experiments, the parameter values that are used for GA and PSA

algorithm in this group of instances are as follows respectively: For

GA, the initial population is set to 50. The crossover and mutation

rates are considered 0.9 and 0.2. The maximum number of iterations is

determined as 100. In PSA, the initial population is set to 5. The

number of neighborhood solutions is set to 20. Maximum number of

iterations is determined as 100 and α=0.85. For instances of this

group, two proposed algorithms were able to obtain the optimal

solution of all the instances that are introduced by Amaral (2013b). In

addition, the proposed algorithms consume less time to obtain optimal

solution in comparison to the MIP model of Amaral (2013b). In

Figure 7, Figure 8, Figure 9 and Figure 10 computational time of two

proposed algorithms for different parameters of are compared.

Fig. 7. Comparison of computational time of

proposed GA and PSA algorithm on instances

with size n≤23 and t= [

]

Fig. 8. Comparison of computational time of

proposed GA and PSA algorithm on instances

with size n≤23 and t= [

]

484 (IJMS) Vol. 10, No. 2, Spring 2017

Fig. 9. Comparison of computational time of

proposed GA and PSA algorithm on instances

with size n≤23 and t= [

]

Fig. 10. Comparison of computational time of

proposed GA and PSA algorithm on instances

with size n≤23 and t= [

]

Obtaining the optimal solution for all instances of this group in a

reasonable and short computational time is a sign of the ability of two

proposed algorithms to solve different PROP instances, so it seems

that these algorithms can be useful to solve real large instances.

Instances with Size 23<n≤70

Next, the performance of genetic and population-based simulated

annealing algorithms are evaluated on the second group of instances

with n=30, 40, 56, 60 and 70 and parameter t= [

],

], [

] and [

].As

said before, the optimal solution of these instances are not in the

literature and these instances are solved in this paper for the first time.

In this group, instances with n=30 are from Anjos and Vannelli

(2008), instances with n=40 are from Hungerländer and Rendl (2013),

instances with n=56 are from Anjos and Yen (2009), and instances

with n=60 and n=70 are from Anjos et al. (2005). All instances of this

group are solved with different values of parameter t consisting of [

],

[

], [

] and [

]. For this group of instances, since the number of

facilities is large, selection of appropriate values for proposed

algorithm parameters is very important. Therefore, before solving this

group of instances, using Taguchi method, parameters of proposed

algorithms should be tuned. So in continue, at first, parameter tuning

is applied to determine the parameters of two proposed algorithms,

then, results of applying proposed algorithms to solve this group of

instances are described.

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 485

Parameter Tuning

The most experimental design to tune parameters of algorithms is

Taguchi method. In this method, a large number of factors can be

studied using a small number of required experiments (Phadke, 1989).

In Taguchi method, the factors of algorithm are divided into two

main categories of controllable and noise factors. The aim of this

method is minimizing the effect of noise factors and determining the

optimal level of controllable factors. To measure the stability of a

process, the signal-to-ratio is used in this method (Hsu, 2012). Here

the term signal denotes the desirable value (mean response variable)

and noise signifies the undesirable value (standard deviation). The

formulation of S/N estimates how samples deviate from the center of

population and maximizing the S/N ratio is the aim (Tang et al., 2012).

The formula of calculation of S/N is related to the objective function

of the problem. In the Taguchi approach, the objective functions are

classified into three groups of the smaller-the-better type, the nominal-

the-best type and the larger-the-better type. As the objective function

of PROP is categorized in the smaller- he better type, related S/N ratio

is calculated as follows:

 (14)

In Equation (2),
 denotes the response value (the value of

objective function) of the ith instance. In what follows, at first, the

levels of the factors are introduced, then, after considering one

instance, Taguchi method will be executed to determine the best level

of each factor. The proposed algorithms include four factors. Table 2

shows the considered levels for these four factors for PSA algorithm

and Table 3 Shows this information for GA. The number of degrees of

freedom should be determined at first in order to select an appropriate

orthogonal array, so the total degree of freedom is set to eight;

therefore, the appropriate array must have at least eight trials. We

apply the array L9 for the experiments.

486 (IJMS) Vol. 10, No. 2, Spring 2017

Table 2. The controlled factors of PSA and their levels

factors Description Level 1 Level 2 Level 3

Init_ sol Number of Initial Solutions 10 20 30

Num_neigh
Number of neighborhood of

each solutions
20 30 40

Alpha The Cooling ratio 0.85 0.9 0.95

Maxiter maximum number of iterations 100 200 300

Table 3. The controlled factors of GA and their levels

factors Description Level 1 Level 2 Level 3

Init_ pop
Number of Initial

populations
50 100 150

Cross_rate The Crossover rate 0.7 0.8 0.9

Mut_rate The Mutation rate 0.05 0.1 0.15

Maxiter
maximum number of

iterations
150 300 450

We use instances with 70 facilities for the experiments. The

objective function should be transformed into its average relative

percentage deviation (RPD) to calculate the performance of algorithm.

PRD is defined as follow:

 (15)

where is number of replication, M is number of instance in each

group (is equal to 5), costij is the total cost obtained for instance i in

replication j and LBi is the minimum total cost obtained for instance i.

Because of the optimal values of instance is not known, LBi is equal

to the best total cost obtained by the proposed algorithms for instance

i. The results are transformed into S/N ratio according to the formula

presented below:

 (16)

where is the for trial and is number of objective

functions (is equal to 4 for t= [

],

], [

] and [

]). Table 4 shows the

orthogonal array and the RPD for each trial and for each

experimental trial for PSA and Table 5 shows this information for GA.

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 487

In these tables for

 , for

 , for

 ,

for

 . For each level of control factors, the ratio is averaged

and its value is plotted against each control factor of PSA algorithm in

Figure 11. Also, Figure 12 shows this information for GA. Since, the

aim is to maximize the , the level with highest is

selected as the best level.

Table 4. Orthogonal array and data for the screen experiment (PSA Algorithm)

Init_

sol

Num_

neigh
Alpha Maxiter SNRA1

10 20 0.85 100 0.0123 0.0116 0.0167 0.0197 36.2330

10 30 0.90 200 0.0039 0.0022 0.0012 0.0026 51.5341

10 40 0.95 300 0.0042 0.0017 0.0004 0.0005 52.7949

20 20 0.90 300 0.0015 0.0008 0.0006 0.0012 59.3494

20 30 0.95 100 0.1386 0.1270 0.1341 0.1418 17.3612

20 40 0.85 200 0.0017 0.0003 0.0006 0.0006 60.3019

30 20 0.95 200 0.0041 0.0044 0.0049 0.0084 44.8842

30 30 0.85 300 0.0008 0.0004 0.0002 0.0001 66.6012

10 20 0.85 100 0.0123 0.0116 0.0167 0.0197 36.2330

Fig. 11. The mean S/N ratio plot for PSA algorithm

Table 5. orthogonal array and data for the screen experiment (GA)

Init_
pop

Cross_
rate

Mut_
rate

Maxiter SNRA1

50 0.7 0.05 150 0.07504 0.07105 0.07847 0.01630 23.6902
50 0.8 0.10 300 0.03015 0.01958 0.02042 0.02510 32.3300
50 0.9 0.15 450 0.02017 0.01416 0.01555 0.01351 35.8861

100 0.7 0.10 450 0.02238 0.01524 0.00829 0.01493 35.9144
100 0.8 0.15 150 0.02859 0.02024 0.02494 0.02534 32.0570
100 0.9 0.05 300 0.02534 0.01968 0.02274 0.02290 32.8587
150 0.7 0.15 300 0.02601 0.01627 0.01328 0.01175 35.0314
150 0.8 0.05 450 0.01992 0.01376 0.01624 0.01566 35.6236
150 0.9 0.10 150 0.02749 0.01795 0.02866 0.02623 31.8922

488 (IJMS) Vol. 10, No. 2, Spring 2017

Fig. 12. The mean S/N ratio plot for GA algorithm

Results of applying two proposed algorithms on instances with

size 23<n≤70

After setting the parameters, for evaluation of the proposed algorithms

to solve this group of instances, the relative percentage deviation

(RPD) is computed as follows:

(17)

where is number of replication (is equal to 20), is the total

cost obtained for instance in replication and is equal to the best

total cost obtained by the proposed algorithms for instance .

Tables 6, 7, 8 and 9 show the evaluation of two proposed

algorithms on instances of this group with different values of t in both

terms of cost function value and computational time as well as RPD.

In these tables, values in bold-face indicate the best found cost

function value for an instance. Regarding these tables, it can be

observed that for instances with size n=30, the best obtained cost

function values of two algorithms in all tables are equal. Whereas the

computational time of PSA algorithm is less than GA in all instances.

As for other instances of this group, it can be seen that in PSA

algorithm almost the value of cost function of all instances is equal or

less than GA, and proposed PSA algorithm has better performance

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 489

rather than GA in both aspects of cost function value and

computational time.

Table 6. GA and PSA algorithm results on instances with size 23<n≤70 and t= [

]

Problem

name

Num. of

facilities
GA result

GA

time(s)

GA

RPD

PSA

result

PSA

time(s)

PSA

RPD

N30_1 30 4174 5.515 2.5874 4174 2.832 0.047

9 N30_2 30 11154.5 5.613 2.1142 11154.5 2.991 0.058

2 N30_3 30 23127 5.099 1.7821 23127 2.922 0.070

1 N30_4 30 32651.5 5.112 2.3318 32651.5 2.944 0.089

9 N30_5 30 60353 5.216 1.9521 60353 3.001 0.042

9 N40_1 40 55541.5 11.012 1.8121 55526.5 6.151 0.391

6 N40_2 40 50399 10.561 1.7159 50399 6.018 0.291

6 N40_3 40 42118.5 10.212 2.0015 42118.5 6.219 0.382

1 N40_4 40 40998 10.641 1.9725 40998 6.181 0.512

9 N40_5 40 52623 11.001 2.0259 52562 6.237 0.403

6 sko56-1 56 32454 25.901 2.0222 32292 15.001 0.177

1 sko56-2 56 259531 25.818 2.3361 259500 15.317 0.261

2 sko56-3 56 86215 26.061 1.8882 85881 15.161 0.212

9 sko56-4 56 159092 26.005 2.2393 158939 14.992 0.196

5 sko56-5 56 301663.5 25.012 2.1913 299429.5 14.981 0.201

2 A-60-01 60 772746 39.146 0.7607 772202 26.069 0.081

3 A-60-02 60 430679 38.871 0.7125 430384 26.153 0.094

6 A-60-03 60 331190.5 38.755 0.8329 331140.5 25.905 0.075

5 A-60-04 60 201451 39.156 0.8074 201052 26.879 0.090

1 A-60-05 60 165174 39.312 0.8116 165099 26.019 0.087

7 A-70-01 70 784096 60.164 0.7607 779563 40.897 0.091

3 A-70-02 70 738576 60.154 0.7001 738304 41.092 0.099

2 A-70-03 70 767811.5 60.516 0.8321 764463.5 40.919 0.089

1 A-70-04 70 493976 61.289 0.7156 491217 41.354 0.098

3 A-70-05 70 2188127.5 61.541 0.8028

2187780.5 41.253 0.086

9

Continue Table 7. GA and PSA algorithm results on instances with size 23<n≤70 and t= [

]

Problem

name

Num. of

facilities
GA result

GA

time(s)

GA

RPD

PSA

result

PSA

time(s)

PSA

RPD

N30_1 30 5310 6.931 1.7099 5310 3.916 0.0338

N30_2 30 14894.5 6.722 1.9321 14894.5 3.616 0.0412

N30_3 30 27306 6.515 2.0125 27306 3.203 0.0501

N30_4 30 44498.5 6.991 1.6991 44498.5 3.109 0.0421

N30_5 30 68998 6.812 1.8972 68998 3.141 0.0363

N40_1 40 83103.5 12.808 0.8229 83103.5 7.431 0.0501

N40_2 40 63303 12.901 0.8561 63212 7.615 0.0404

N40_3 40 46444.5 12.813 0.8912 46444.5 7.687 0.0498

490 (IJMS) Vol. 10, No. 2, Spring 2017

Continue Table 7. GA and PSA algorithm results on instances with size 23<n≤70 and t= [

]

Problem

name

Num. of

facilities
GA result

GA

time(s)

GA

RPD

PSA

result

PSA

time(s)

PSA

RPD

N40_4 40 45142 12.991 0.9057 45142 7.591 0.0523

N40_5 40 58561 12.901 0.8661 58492 7.573 0.0411

sko56-1 56 43037 29.991 1.0965 42946 17.701 0.1308

sko56-2 56 309523 30.156 1.1125 309277 17.584 0.1936

sko56-3 56 107863 30.117 1.2351 107469 17.612 0.2126

sko56-4 56 200531 29.788 1.4083 200421 17.629 0.1121

sko56-5 56 374636.5 30.012 0.9934 374202.5 17.681 0.1712

A-60-01 60 996339 44.912 0.3954 996191 31.056 0.0101

A-60-02 60 494862 45.011 0.3148 494862 31.346 0.0122

A-60-03 60 411991.5 45.199 0.3569 411379.5 30.936 0.0115

A-60-04 60 267530 44.961 0.5421 267511 31.004 0.0128

A-60-05 60 187904 44.981 0.4901 187572 30.911 0.0131

A-70-01 70 965581 74.105 0.3954 963209 50.812 0.0116

A-70-02 70 962106 75.097 0.4165 961762 51.019 0.0120

A-70-03 70 971729.5 74.962 0.5108 970083.5 50.666 0.0168

A-70-04 70 625524 75.034 0.3368 625518 51.199 0.0121

A-70-05 70 2793270.5 74.649 0.4289 2789182.5 50.727 0.0109

Table 8. GA and PSA algorithm results on instances with size 23<n≤70 and t= [

]

Problem

name

Num. of

facilities
GA result

GA

time(s)

GA

RPD
PSA result

PSA

time(s)

PSA

RPD

N30_1 30 6791 7.012 2.1940 6791 3.981 0.2356

N30_2 30 18928.5 7.121 2.2878 18928.5 3.997 0.2639

N30_3 30 34523 7.091 2.0061 34523 3.992 0.3152

N30_4 30 52710.5 7.053 2.2215 52710.5 3.989 0.2069

N30_5 30 89548 7.190 2.9925 89548 3.988 0.2912

N40_1 40 95555.5 14.081 0.9552 98512.5 8.001 0.0414

N40_2 40 73756 14.215 0.8910 73752 7.981 0.0347

N40_3 40 65285.5 14.011 1.0159 65280.5 7.925 0.0369

N40_4 40 63314 14.128 0.7643 63314 8.012 0.0509

N40_5 40 74010 14.021 0.9268 74006 7.991 0.0382

sko56-1 56 49495 32.012 0.7471 49475 20.012 0.0917

sko56-2 56 362975 31.911 0.9125 362393 19.981 0.0931

sko56-3 56 128851 32.128 0.7169 128843 19.391 0.0896

sko56-4 56 239085 32.241 0.8215 239048 20.019 0.0945

sko56-5 56 468219.5 31.961 0.7658 467565.5 19.882 0.0792

A-60-01 60 1203452 55.311 0.4702 1203171 38.057 0.0215

A-60-02 60 557733 55.194 0.6251 557293 37.976 0.0222

A-60-03 60 518039.5 55.097 0.5136 517645.5 38.023 0.0301

A-60-04 60 315892 54.99 0.4413 315892 38.152 0.0299

A-60-05 60 246545 55.1 0.5109 245884 38.025 0.0267

A-70-01 70 1077997 80.821 0.4701 1076667 55.323 0.0164

A-70-02 70 1107759 81.137 0.3898 1107427 54.957 0.0139

A-70-03 70 1164060.5 81.144 0.4976 1163514.5 54.481 0.0198

A-70-04 70 751420 81.342 0.4612 751412 55.022 0.0153

A-70-05 70 3294405.5 80.912 0.5123 3294390.5 54.151 0.0168

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 491

Table 9. GA and PSA algorithm results on instances with size 23<n≤70 and t= [

]

Proble

m name

Num. of

facilities

GA

result

GA

time(s)

GA

RPD

PSA

result

PSA

time(s)

PSA

RPD

N30_1 30 7289 7.927 1.3362 7289 4.251 0.1207

N30_2 30 19785.5 7.836 1.5912 19785.5 4.398 0.1591

N30_3 30 39524 7.991 1.6985 39524 4.414 0.1398

N30_4 30 59587.5 7.983 1.4113 59587.5 4.298 0.1429

N30_5 30 104449 8.001 1.7821 104449 4.329 0.1942

N40_1 40 108232.5 15.036 1.6984 108168.5 8.001 0.0428

N40_2 40 78263 14.997 1.3262 78263 8.070 0.0378

N40_3 40 71439.5 15.055 1.1892 71428.5 8.015 0.0529

N40_4 40 69254 15.025 1.3657 69254 8.015 0.0491

N40_5 40 81719 14.991 1.3156 81644 8.018 0.0366

sko56-1 56 55459 42.004 0.5471 55248 30.001 0.1151

sko56-2 56 400744 41.991 0.5138 398605 29.956 0.1249

sko56-3 56 141395 41.971 0.5945 141393 29.981 0.1068

sko56-4 56 264140 42.051 0.6159 264078 30.012 0.1315

sko56-5 56 539411.5 42.023 0.5681 539340.5 29.973 0.1437

A-60-01 60 1302994 61.529 0.4322 1302507 45.198 0.0131

A-60-02 60 680369 61.641 0.3831 679772 44.986 0.0193

A-60-03 60 583081.5 62.287 0.3612 582558.5 44.699 0.0201

A-60-04 60 345366 61.676 0.4142 342637 45.154 0.0142

A-60-05 60 275042 62.239 0.5171 273604 44.789 0.0169

A-70-01 70 1274578 96.695 0.4322 1272547 70.982 0.0261

A-70-02 70 1232527 97.132 0.4697 1230359 70.955 0.0202

A-70-03 70 1355131.5 96.167 0.3319 1355131.5 71.524 0.0191

A-70-04 70 827554 96.214 0.4189 827460 70.867 0.0297

A-70-05 70 3696487.5 97.162 0.3046 3696447.5 71.571 0.0253

Conclusion

The facility layout problems encompass a large category of

optimization problems that have various names according to their

different characteristics, such as the workshop characteristics, the

methods to formulate and tackling different versions of basic layout

problems and different methods to solve facility layout problems.

Based on layout configuration, multi-row problems are a category of

facility layout problems that has attracted the notice of researchers

recently. In the literature, three problems of double row layout

problem, corridor problem and parallel row ordering problem are

introduced as multi-row problems that arrange the facilities in two

492 (IJMS) Vol. 10, No. 2, Spring 2017

rows considering different assumptions. These problems are NP-hard.

As exact methods in facility layout problems are only able to solve

small and medium instances, in the literature, meta-heuristic

algorithms have been applied to solve medium and large instances of

different categories of facility layout problems that have shown

acceptable performances. In fact, for each category of facility layout

problems, after introducing different models to formulate and exact

algorithms to solve, meta-heuristic algorithms have been used to solve

medium and large facility layout problems.

As PROP was introduced in 2013, only there is one paper in the

literature that proposed a MIP formulation for PROP. In the

mentioned paper, only instances with size n≤23 were introduced and

solved to optimality in a long computational time. So, in this paper

both genetic and a novel population based simulated annealing

algorithms are implemented for the PROP, for the first time to solve

medium and large instances of the PROP. In the literature, GA and SA

have shown good performance comparing to other meta-heuristic

methods to solve different facility layout problems.

In this paper, describing steps of two proposed algorithms, initially

the algorithms are evaluated on several instances from the basic paper

of PROP (Amaral, 2013b) with size n≤23. Results show that two

proposed algorithms are able to achieve optimal solutions, although

the computational time of proposed PSA is less than GA in all

instances. Moreover, the algorithms are further evaluated on instances

with sizes n= 30, 40, 56, 60 and 70. These problems do not have

optimal solutions and are introduced and solved in this paper for the

first time. Results show for instances with size n=30, the best obtained

cost function values of two proposed algorithms are similar but PSA

algorithm consumes less computational time rather than GA. For

larger instances with sizes n=40, 56, 60 and 70, the proposed PSA

algorithm presents a better performance obtaining smaller cost

function values and consuming less computational time. Generally, it

can be said that the proposed PSA has shown better performance

rather than the proposed GA to solve medium and large instances of

the PROP.

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 493

Regarding different multi-row problems and different methods to

solve them that were described, it seems that because in this paper

meta- heuristic algorithms are applied to solve medium and large

instances of the PROP for the first time, applying different meta-

heuristic algorithms to solve this problem can be considered for future

works. Also adding some constraints and assumptions to the multi-

row problems according to real assumptions of facility layout

problems in industries and generating new problems can be

considered as an another suggestion to continue this paper.

494 (IJMS) Vol. 10, No. 2, Spring 2017

References

Ahonen, H., Gomes de Alvarenga, A., & Amaral, A. (2014). Simulated

annealing and tabu search approaches for the corridor allocation

problem. European Journal of Operational Research, 232(1), 221-

233.

Akbari, M., & Maadi, M. (2011). Imperialist competitive algorithm for

solving single row facility layout problem. Paper presented at the 4th

International Conference of Iranian Operations Research Society, (In

Persian).

Amaral, A. R. (2006). On the exact solution of a facility layout problem.

European Journal of Operational Research, 173(2), 508-518.

Amaral, A. R. (2008). An exact approach to the one-dimensional facility

layout problem. Operations Research, 56(4), 1026-1033.

Amaral, A. R. (2009). A new lower bound for the single row facility layout

problem. Discrete Applied Mathematics, 157(1), 183-190.

Amaral, A. R. (2012). The corridor allocation problem. Computers &

Operations Research, 39(12), 3325-3330.

Amaral, A. R. (2013a). Optimal solutions for the double row layout problem.

Optimization Letters, 7(2), 407–413.

Amaral, A. R. (2013b). A parallel ordering problem in facilities layout.

Computers & Operations Research, 40(12), 2930-2939.

Amaral, A. R., & Letchford, A. N. (2013). A polyhedral approach to the

single row facility layout problem. Mathematical programming,

141(1-2), 453-477.

Anjos, M. F., Fischer, A., & Hungerländer, P. (2016). Solution approaches

for the double-row equidistant facility layout problem. In Operations

Research Proceedings (pp. 17-23). Springer.

Anjos, M. F., Kennings, A., & Vannelli, A. (2005). A semidefinite

optimization approach for the single-row layout problem with unequal

dimensions. Discrete Optimization, 2(2), 113-122.

Anjos, M. F., & Vannelli, A. (2008). Computing globally optimal solutions

for single-row layout problems using semidefinite programming and

cutting planes. INFORMS Journal on Computing, 20(4), 611-617.

Anjos, M. F., & Yen, G. (2009). Provably near-optimal solutions for very

large single-row facility layout problems. Optimization Methods &

Software, 24(4-5), 805-817

Bahrami, F., Safari, H., Tavakkoli-Moghaddam, R., & Modarres Yazdi, M.

(2017). On modelling door-to-door parcel delivery services in Iran.

Iranian Journal of Management Studies, 9(4), 883-906.

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 495

Braglia, M. (1996). Optimisation of a simulated-annealing-based heuristic

for single row machine layout problem by genetic algorithm.

International Transactions in Operational Research, 3(1), 37-49.

Chung, J., & Tanchoco, J. (2010). The double row layout problem.

International Journal of Production Research, 48(3), 709-727.

Datta, D., Amaral, A. R., & Figueira, J. R. (2011). Single row facility layout

problem using a permutation-based genetic algorithm. European

Journal of Operational Research, 213(2), 388-394.

Deb, K., & Kalyanmoy, D. (2001). Multi-objective optimization using

evolutionary algorithms. New York, NY: John Wiley & Sons, Inc.

Djellab, H., & Gourgand, M. (2001). A new heuristic procedure for the

single-row facility layout problem. International Journal of Computer

Integrated Manufacturing, 14(3), 270-280.

Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems:

A survey. Annual Reviews in Control, 31(2), 255-267.

Ficko, M., Brezocnik, M., & Balic, J. (2004). Designing the layout of single-

and multiple-rows flexible manufacturing system by genetic

algorithms. Journal of Materials Processing Technology, 157, 150-

158.

Ghosh, D., & Kothari, R. (2012). Population heuristics for the corridor

allocation problem. Indian Institute of Management Ahmedabad

(IIMA), Research and Publication Department.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine

learning. Machine Learning, 3(2), 95-99.

Gomes de Alvarenga, A., Negreiros-Gomes, F. J., & Mestria, M. R. (2000).

Metaheuristic methods for a class of the facility layout problem.

Journal of Intelligent Manufacturing, 11(4), 421-430.

Guan, J., & Lin, G. (2016). Hybridizing variable neighborhood search with

ant colony optimization for solving the single row facility layout

problem. European Journal of Operational Research, 248(3), 899-

909.

Heragu, S. S., & Alfa, A. S. (1992). Experimental analysis of simulated

annealing based algorithms for the layout problem. European Journal

of Operational Research, 57(2), 190-202.

Heragu, S. S., & Kusiak, A. (1988). Machine layout problem in flexible

manufacturing systems. Operations Research, 36(2), 258-268.

Heragu, S. S., & Kusiak, A. (1991). Efficient models for the facility layout

problem. European Journal of Operational Research, 53(1), 1-13.

Hosseini-Nasab, H., & Emami, L. (2013). A hybrid particle swarm

496 (IJMS) Vol. 10, No. 2, Spring 2017

optimisation for dynamic facility layout problem. International

Journal of Production Research, 51(14), 4325-4335.

Hsu, C.-M. (2012). Improving the lighting performance of a 3535 packaged

hi-power LED using genetic programming, quality loss functions and

particle swarm optimization. Applied Soft Computing, 12(9), 2933-

2947.

Hungerländer, P., & Rendl, F. (2013). Semidefinite relaxations of ordering

problems. Mathematical Programming, 140(1), 77-97.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by

simulated annealing. Science, 220(4598), 671-680.

Kothari, R., & Ghosh, D. (2012a). Path relinking for single row facility

layout. Indian Institute of Management, Ahmedabad.

Kothari, R., & Ghosh, D. (2013b). Insertion based Lin–Kernighan heuristic

for single row facility layout. Computers & Operations Research,

40(1), 129-136.

Kothari, R., & Ghosh, D. (2013bc). Tabu search for the single row facility

layout problem using exhaustive 2-opt and insertion neighborhoods.

European Journal of Operational Research, 224(1), 93-100.

Kothari, R., & Ghosh, D. (2014a). An efficient genetic algorithm for single

row facility layout. Optimization Letters, 8(2), 679-690.

Kothari, R., & Ghosh, D. (2014b). A scatter search algorithm for the single

row facility layout problem. Journal of Heuristics, 20(2), 125-142.

Kouvelis, P., & Chiang, W.-C. (1996). Optimal and heuristic procedures for

row layout problems in automated manufacturing systems. Journal of

the Operational Research Society, 47(6), 803-816.

Kumar, K. R., Hadjinicola, G. C., & Lin, T.-L. (1995). A heuristic procedure

for the single-row facility layout problem. European Journal of

Operational Research, 87(1), 65-73.

Kunlei, L., Chaoyong, Z., Liang, G., & Xinyu, S. (2011). Single row facility

layout problem using an imperialist competitive algorithm.

Proceedings from the 41st International Conference on Computers &

Industrial Engineering.

Love, R., & Wong, J. (1976). On solving a one-dimensional space allocation

problem with integer programming. INFOR: Information Systems and

Operational Research, 14(2), 139-143.

Maadi, M., Javidnia, M., & Ghasemi, M. (2016). Applications of two new

algorithms of cuckoo optimization (CO) and forest optimization (FO)

for solving single row facility layout problem (SRFLP). Journal of

Artificial Intelligence and Data Mining, 4(1), 35-48.

 Two Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering … 497

Murray, C. C., Smith, A. E., & Zhang, Z. (2013). An efficient local search

heuristic for the double row layout problem with asymmetric material

flow. International Journal of Production Research, 51(20), 6129-

6139.

Orand, S. M., Mirzazadeh, A., Ahmadzadeh, F., & Talebloo, F. (2015).

Optimization of the inflationary inventory control model under

stochastic conditions with Simpson Approximation: Particle swarm

optimization approach. Iranian Journal of Management Studies, 8(2),

203.

Ozcelik, F. (2012). A hybrid genetic algorithm for the single row layout

problem. International Journal of Production Research, 50(20), 5872-

5886.

Palubeckis, G. (2015). Fast local search for single row facility layout.

European Journal of Operational research, 246(3), 800-814.

Palubeckis, G. (2017). Single row facility layout using multi-start simulated

annealing. Computers & Industrial Engineering, 103, 1-16.

Phadke, M. S. (1989). Quality Engineering Using Robust Design. NJ, US:

Prentice Hall.

Picard, J.-C., & Queyranne, M. (1981). On the one-dimensional space

allocation problem. Operations Research, 29(2), 371-391.

Romero, D., & Sánchez-Flores, A. (1990). Methods for the one-dimensional

space allocation problem. Computers & Operations Research, 17(5),

465-473.

Samarghandi, H., & Eshghi, K. (2010). An efficient tabu algorithm for the

single row facility layout problem. European Journal of Operational

Research, 205(1), 98-105.

Samarghandi, H., Taabayan, P., & Jahantigh, F. F. (2010). A particle swarm

optimization for the single row facility layout problem. Computers &

Industrial Engineering, 58(4), 529-534.

Satheesh Kumar, R., Asokan, P., Kumanan, S., & Varma, B. (2008). Scatter

search algorithm for single row layout problem in FMS. Advances

in Production Engineering & Management, 3, 193-204.

Simmons, D. M. (1969). One-dimensional space allocation: An ordering

algorithm. Operations Research, 17(5), 812-826.

Solimanpur, M., Vrat, P., & Shankar, R. (2005). An ant algorithm for the

single row layout problem in flexible manufacturing systems.

Computers & Operations Research, 32(3), 583-598.

Tang, C.-Y., Wu, Y.-L., & Peng, C.-C. (2012). Fundamental matrix

estimation by multiobjective genetic algorithm with Taguchi's method.

Applied Soft Computing, 12(1), 553-558.

498 (IJMS) Vol. 10, No. 2, Spring 2017

Teo, Y. T., & Ponnambalam, S. (2008). A hybrid ACO/PSO heuristic to

solve single row layout problem. Proceedings from CASE 2008: 4
th

IEEE International Conference on the Automation Science and

Engineering, Washington, DC.

Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing: Theory

and applications. NY: Springer, 7-15.

Yadegari, E., Najmi, H., Ghomi-Avili, M., & Zandieh, M. (2015). A flexible

integrated forward/reverse logistics model with random path-based

memetic algorithm. Iranian Journal of Management Studies, 8(2),

287.

Zareei, M., & Hassan-Pour, H. A. (2015). A multi-objective resource-

constrained optimization of time-cost trade-off problems in scheduling

project. Iranian Journal of Management Studies, 8(4), 653-685.

Zhang, Z., & Murray, C. C. (2012). A corrected formulation for the double

row layout problem. International Journal of Production Research,

50(15), 4220-4223.

Zuo, X., Murray, C. C., & Smith, A. E. (2014). Solving an extended double

row layout problem using multiobjective tabu search and linear

programming. IEEE Transactions on Automation Science and

Engineering, 11(4), 1122-1132.

