
Civil Engineering Infrastructures Journal, 50(1): 95 – 118, June 2017 

Print ISSN: 2322-2093; Online ISSN: 2423-6691 

DOI: 10.7508/ceij.2017.01.006 

 

 

* Corresponding author E-mail: ghadi@ut.ac.ir 
 

   95 

 

Coupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a 

Transversely Isotropic Half-Space with a Flexible Structure 
 

Morshedifard, A.1 and Eskandari-Ghadi, M.2* 

 
1 M.Sc., School of Civil Engineering, College of Engineering, University of Tehran, 

Tehran, Iran. 
2 Professor, School of Civil Engineering, College of Engineering, University of Tehran, 

Tehran, Iran.  

 

 
Received: 02 Aug. 2016;                  Revised: 05 Jan. 2017;                       Accepted: 16 Jan. 2017 

ABSTRACT: The response of structures bonded to the surface of a transversely isotropic 

half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled 

FE-BE scheme. To achieve this end, a Finite Element program has been developed for 

frequency domain analysis of 3D structures, as the first step. The half-space underlying the 

structure is taken into consideration using a Boundary Element technique that incorporates 

half-space surface load Green’s functions for a transversely isotropic medium. Next, the two 

programs are combined using a direct coupling algorithm and the final program is obtained. 

To validate the results, some benchmark problems are solved with the FE and the BE 

programs, separately and then the coupled technique is checked with the results of some 

special cases for which the solutions are available in the literature. At the end, a parametric 

study is carried out on several common types of structures to study the effects of the degree 

of anisotropy of transversely isotropic soil medium on the dynamic behavior of the structure. 

Moreover, the effect of soil-structure interaction (SSI) on the natural vibration frequency of 

the structures is also studied. 

 

Keywords: Boundary Element Method, Coupled BE-FE, Finite Element Method, Flexible 

Foundation, Soil-Structure-Interaction, Transversely Isotropic. 

 

 

INTRODUCTION 

 

Almost all structures are founded on 

deformable ground and it has been known for 

the past few decades that taking the dynamic 

response of the soil medium into account can 

have significant effects on the final design of 

the structure (Li et al., 2014). Over the years, 

this fact has encouraged researchers to take 

on the challenging task of exploring various 

analytical and numerical methods to address 

the important problem of dynamic soil-

structure interaction (SSI). 

Most of the early research on SSI has been 

concerned with the problem of rigid 

foundations in contact with an isotropic half-

space (see for example Luco and Westman, 

1971; Awojobi and Grootenhuis, 1965). In 

these papers, the semi-analytical methods 

were utilized to obtain vertical, horizontal, 

torsional and rocking impedance and 

compliances of circular rigid foundations in 

contact with an isotropic half-space, as the 
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fundamental step in studying SSI. Since the 

natural soil deposits usually have a 

sedimentary character, their behavior can be 

best described by transversely isotropic 

constitutive laws. This fact has prompted 

researchers to extend the previously obtained 

analytical solutions for the isotropic half-

space to a transversely isotropic half-space. 

For instance, Eskandari-Ghadi and Ardeshir-

Behrestaghi (2010) solved the problem of a 

vibrating disc in an arbitrary depth of a TIHS 

and Eskandari-Ghadi et al. (2013) have, with 

the help of half-space Green’s functions, 

investigated the vertical and horizontal 

harmonic vibrations of a rigid rectangular 

foundation attached on the top of a TIHS. 

Ardeshir-Behrestaghi et al. (2013), with the 

use of potential functions, obtained the 

dynamic response of a transversely isotropic, 

linearly elastic layer bonded to the surface of 

a TIHS under arbitrary shape surface load. 

Also, Eskandari-Ghadi et al. (2014), with 

introducing a function space, have 

numerically determined the vertical 

impedance function of a rigid circular plate 

rested on the top of a TIHS.  

Since analytical solutions are only 

available for foundations with a simple 

geometry, we need to consider numerical 

methods for tackling more complicated 

engineering boundary value problems in SSI. 

The Finite Element and Boundary Element 

methods are two of such techniques. The 

Finite Element method, however, has an 

inherent deficiency in handling boundary 

value problems where a semi-infinite soil 

medium needs to be modeled since a 

truncation of the infinite domain at a finite 

distance from the disturbance is unavoidable. 

Various techniques such as energy absorbing 

boundaries (Nielsen, 2014) and non-

reflecting boundary conditions (Givoli, 2004) 

have been utilized to indirectly incorporate 

the deleted portion of the semi-infinite 

medium. In all these methods, a portion of the 

soil medium should eventually be modeled 

and it should be noted that it is rather 

complicated to come up with these techniques 

to handle the problem of wave propagation in 

a general anisotropic medium (Savadatti and 

Guddati, 2012a,b). 

The Boundary Element method, on the 

other hand, is an excellent alternative to the 

Finite Element method for modeling the 

semi-infinite half-space. The Green’s 

functions utilized in this method 

automatically satisfy the radiation condition 

at infinity and consequently there are no 

pollution of the results from reflected waves 

at the far boundaries (Aleynikov, 2010). 

However, the same Green’s functions can 

also be viewed as the method’s Achilles' heel 

since they can be very difficult to obtain in 

closed form for complex boundary value 

problems such as for anisotropic and non-

homogeneous mediums. The Green’s 

functions for a TIHS, can be found for 

example in the work of Eskandari-Ghadi and 

Amiri-Hezaveh (2014) and Akbari et al. 

(2016). In their solution, the governing 

equations for an exponentially graded 

medium have been uncoupled using a set of 

potential functions. Next, Fourier series and 

Hankel integral transforms have been used to 

arrive at the final expressions for 

displacement and stress fields in the semi-

infinite exponentially graded medium.  

Wong and Luco (1976) were among the 

first researchers to use constant Boundary 

Elements to evaluate the vertical, rocking and 

horizontal compliance functions for an 

arbitrary-shaped rigid structure resting on an 

isotropic half-space. More detailed 

expositions with attention to multilayered 

isotropic half-spaces can be found in Guzina 

(2000). In a similar research, Amiri-Hezaveh 

et al. (2013) have presented the horizontal 

and vertical impedance functions for a rigid 

rectangular foundation in contact with a 

transversely isotropic multilayered half-space 

using the same constant Boundary Elements. 

The scaled boundary Finite Element is also 
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another numerical method that can be applied 

for the solution of problems in dynamic SSI. 

Bazyar and Song (2006) applied the method 

for solution of the problem of either a rigid 

strip or square foundation embedded in a 

transversely isotropic non-homogeneous 

half-space.  

All the above mentioned researches have 

focused on structures with infinite rigidity. If 

the flexibility of the foundation is taken into 

consideration, an analytical solution for the 

dynamic case becomes extremely formidable. 

Eskandari-Ghadi et al. (2015) have tried to 

investigate static interaction of flexible 

circular and annular plates with layered 

transversely isotropic half-space in detail, 

where they considered the possibility of 

separation of the flexible foundation from the 

half-space into account. Moreover, Gucunski 

and Peek (1993) solved the problem of 

vibration of an elastic circular plate attached 

on a multilayered medium. The plate 

discretization has been achieved by the Finite 

Difference energy method (Lima et al., 2014) 

and a ring element method has been used for 

the surface of the half-space. The dynamic 

interaction of a flexible rectangular plate with 

an isotropic medium was also investigated by 

Whittaker and Christiano (1982).  

As mentioned previously, the BEM has a 

unique capability in modeling the domain of 

the semi-infinite media analytically; however 

the surface of the domain has to be considered 

numerically. On the other hand, the 

superstructure can be effectively modeled 

using the FEM. This complementarity nature 

of these two methods has been the drive 

behind the pioneering work of Zienkiewicz et 

al. (1977), where a combined FE-BE method 

was proposed for the first time. Since then, 

various coupling techniques such as iterative 

(Soares and Godinho, 2014) and direct 

(Coulier et al., 2014) methods have been 

proposed to achieve the desired coupling of 

the two numerical schemes. Moreover, 

Hematiyan et al. (2012) proposed a general 

technique that can also be used for the BEM-

FEM coupling. The main issue with regard to 

iterative methods, however, is their 

convergence. A discussion of the method and 

its convergence can be found in the work of 

Elleithy et al. (2001). Other methods such as 

overlapping domain decomposition method 

(see Elleithy and Al-Gahtani, 2000) and 

variational techniques (see Lu et al., 1991) 

can also be applied to achieve the coupling.  

In the dynamic SSI, the application of 

some coupling techniques can be observed in 

the paper by Coulier et al. (2014) among 

others. An excellent comparison of the 

performance of several iterative methods and 

the direct coupling method in dynamic SSI is 

presented in their work and the accuracy of 

the direct coupling scheme is demonstrated. 

Moreover, Kokkinos and Spyrakos (1991) 

used the direct coupling method to investigate 

the problem of a flexible plate on the surface 

of an isotropic half-space. In their solution, 

both applied loads and seismic disturbances 

were considered in the frequency domain. We 

should also mention that coupling methods 

are not limited to the problems in SSI and 

applications in fracture mechanics can be 

found in the work of Frangi and Novati 

(2003). 

To the best of the authors’ knowledge, an 

accurate investigation of interaction of 

general three-dimensional flexible structures 

with a transversely isotropic half-space has 

not been carried out yet. In this paper, the 

direct coupling technique is used to 

investigate the frequency domain dynamic 

behavior of several types of structures that are 

bonded to the surface of a TIHS. In this way, 

we study the challenges due to interaction of 

structures of any stiffness with the soil 

described by transversely isotropic behavior, 

which is categorized in the soil-structure-

interaction. The frequency domain Finite 

Element program that has been developed in 

this work for modeling the structure uses 20-

node isoparametric brick elements and the 
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Boundary Element program prepared for this 

research uses 8-node quadratic elements that 

are compatible with the 20-node brick 

elements in the FE mesh of the structure. 

Regarding accuracy, using these elements 

makes the present work more accurate than 

many of the previous research done for rigid 

structures that have mainly used constant or 

linear elements for the mesh on the surface 

patch of the half-space in contact with rigid 

structures. Moreover, the half-space Green’s 

functions derived in Eskandari-Ghadi and 

Amiri-Hezaveh (2014) have been presented 

in a concise manner and are used in the BE 

formulation of this work. The use of half-

space Green’s functions makes it possible to 

restrict the meshed area to the interface of the 

structure and the half-space in the BE 

program. Several cases have been chosen 

from the literature to demonstrate the validity 

and accuracy of the adopted method. The 

effects of variations of three different elastic 

parameters of the TIHS have also been 

studied for circular, rectangular and general 

structures to have a parametric study for the 

effect of degree of anisotropy of the half-

space on the results of the SSI analysis for the 

first time. The results of this paper show that 

the anisotropy of the soil medium can have a 

significant effect on the natural vibration 

frequency of the structure and also the 

displacement magnitudes are noticeably 

affected. 

It is also important to note that since we 

are considering the problem in Fourier space  

of frequency domain, the solution in the time 

domain can be obtained by applying the 

inverse Fourier transform to the results 

obtained herein, and thus the procedure used 

in this paper is restricted to the linear SSI 

problems.  This seems to be a prohibitive 

issue since soil deposits can show 

nonlinearity in the near field. The remedy is 

to model a portion of the near field along with 

the structure using the Finite Element method 

which is capable of capturing the nonlinear 

behavior. This method can be found in the 

work of Yazdchi et al. (1999). 

 

NUMERICAL FORMULATION 

 

A summary of the formulations for Finite 

Element and Boundary Element techniques, 

and the formulations for their combination is 

presented in this section. The Boundary 

Element method is described for the TIHS 

and a schematic of a typical problem is 

displayed in Figure 1. In this figure, f  is 

the structure’s domain modeled using Finite 

Elements, b  represents the domain of the 

TIHS and I  is the interface between the two 

domains. 
 

Finite Element Formulation 

Discretization of the structural domain  

( f ) and applying the standard Finite 

Element technique leads to the following set 

of equations for a problem in linear 

elastodynamics (see Zienkiewicz et al. (2013) 

for more details): 

 

  Mu Cu Ku f  (1) 

 

where M  is the mass matrix, C  is the matrix 

of material damping, K  is the stiffness 

matrix and the vectors , ,u u u  and f  are the 

nodal accelerations, velocities, displacements 

and equivalent forces.  
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Fig. 1. a) A typical structure modeled by 3D Finite Elements attached to the THIS, b) the structure’s interface with 

the TIHS modeled with 8-node boundary elements 

 

 In the special case where the material 

damping is neglected and the applied force 

varies harmonically with time, Eq. (2) can be 

written as: 
 

2

f f
    u f( ); K ( ) KK ( ) M  (2) 

 

where   is the frequency of the external 

excitation and 
fK is the dynamic stiffness 

matrix for the structure. 

 

Boundary Element Formulation for the 

Transversely Isotropic Half-Space 

A good starting point for description of the 

direct Boundary Element method is the 

Boundary Integral Equation (BIE), which is 

used in the present work for the time-

harmonic elastodynamic boundary value 

problem. The forces applied on the half-space 

are due to interaction of the super-structure 

that rests on the TIHS. Thus, assuming body 

forces to be negligible and also taking 
b  to 

represent the boundary of the domain, we 

arrive at: 

 
*

*

, ( , )

( , ) ( , )

( )
b

b

ii i

i

d

d

 

 





 



c u p x u x x

u x p x x
 (3) 

where the superscript i represents an 

arbitrary point on the boundary of the domain 

and represents the source point. In this 

formulation, ( , )p x  and ( , )u x  are the 

traction and displacement vectors at bx  

which is the field point and ( )i

ic c x  in the 

case of 3D elasticity is a 3×3 matrix 

representing the smoothness at point ix . 

*
,( )

i
p x  and 

*
( , )

i
u x   are the traction and 

displacement tensors when ix  is taken as the 

source point and x  is the field point. 

In the Boundary Element method, the 

boundary b  is discretized into a number of 

2D elements with some appropriate 

interpolation functions to be used to evaluate 

the integrals over each element, numerically. 

The components of the matrix i
c  are 

computed using a rigid body displacement for 

the domain under consideration. In this paper, 

since the fundamental solutions for the half-

space are used, we arrive at: 

 
i c I  (4) 

 

where I  is the identity matrix (3×3 for 3D 

problems). Eq. (4) is compatible with the 

smoothness of the boundary of the half-space. 

(a) (b) 

TIHS ( ) 
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Moreover, use of half-space Green’s 

functions makes the integral on the left hand 

side of Eq. (3) to be identically equal to zero. 

Considering the simplifications resulting 

from utilizing half-space Green’s functions 

and assembly of the element matrices, we 

arrive at the following equation: 
 

ˆˆ u Gp  (5) 

 

where û  and p̂  are the global boundary nodal 

displacements and tractions, respectively. 

The details of the Boundary Element solution 

are overlooked here for the sake of brevity.  

 

Green’s Tensor for a TIHS 

The success of a Boundary Element 

solution for an engineering boundary value 

problem is highly dependent on the 

availability of Green’s functions for the 

problem. The Green’s functions, for a TIHS 

loaded by a time-harmonic point-load on its 

surface, can be derived with the use of a 

couple of complete scalar potential functions 

presented in Eskandari-Ghadi (2005). The 

solution is obtained in cylindrical coordinates 

and also involves a Fourier expansion in the 

angular direction and Hankel integral 

transforms in the radial direction. 

Consequently, we need to compute the 

inverse Hankel integral transforms to get the 

Green’s functions for the half-space (see 

Eskandari-Ghadi and Amiri-Hezaveh (2014) 

for more details). We can express the 

displacement Green’s functions at a point on 

the surface of the TIHS in the cylindrical 

coordinates resulting from application of a 

point load in each of the Cartesian directions 

on the surface of the half-space: 
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where ,xr xtu u  and 
xzu  are the displacement 

components in the ,r   and z  directions at 

the field point on the surface of the half-space 

when a unit point-load is applied in the x  

direction at the source point on the surface of 

the THIS. Similarly, ,yr ytu u  and yzu  are the 

displacement components when the point 

force is applied in the y  direction and 

,zr ztu u  and zzu  are the displacement 

components when the point load is applied in 

the z  direction. All the integrals involved in 

these formulations may be written in the 

following compact form: 
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 (7) 

 

where r  is the norm of the position vector 

from point i  (the source point) to x  (the field 

point) and the functions in the integrands are 

defined as: 
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The remaining parameters are: 
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where we have: 
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In these relations, ijc  and   are the 

elasticity constants for a transversely 

isotropic material and mass density, 

respectively. 1s  and 2s  are also the non-pure 

imaginary roots of the characteristic equation  
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The following relationships hold among the 

elasticity constants and the engineering 

parameters (Eskandari-Ghadi et al., 2012) : 
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where E  and E   are Young’s moduli in the 

plane of isotropy and in a direction normal to 

it, respectively. Poisson’s ratios   and    
characterize the lateral strain response in the 

plane of transverse isotropy to a stress acting 

parallel and normal to it, respectively. G   

and G  are the shear moduli in the planes 

normal to the plane of transverse isotropy and 

in the plane of isotropy, respectively 

(Eskandari-Ghadi et al., 2012). 

The components of the displacement 

Green’s functions are needed in the Cartesian 

coordinates. Thus, we apply the 

transformation: 
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on each of the three vector 
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where we have taken advantage of the 

relations ,
yx x x xy z zu u u u    and zy yzu u   

which hold when half-space fundamental 

solutions are used. A closer look at the 

integrals in Eq. (7)  reveals three major issues 

regarding their evaluation, which are (a) the 

upper limit is infinite, (b) there exist 

singularities on the path of integration, and 

(c) the existence of Bessel functions makes an 

oscillatory nature for the integrands. The 

methods presented by Longman are capable 

of handling these issues in a simple and 

elegant manner and we have taken advantage 

of them in the present work (Chen and An, 

2014; Hamidzadeh et al., 2014). 

 

Coupling Procedure 

As explained in the previous sections, the 

dynamic stiffness matrix 
fK  is determined 

using the Finite Element procedure, and the 

Boundary Element solution results in the 

matrix of influence coefficients, G  (Eqs. (2) 

and (5)). These matrices are of different 

natures and cannot be directly combined. Our 

objective is to convert the G  matrix from the 

BE solution to an FE-like matrix so that we 

can assemble the resulting matrix with the 

structure’s stiffness matrix as if the half-space 

were a super element (Coulier et al., 2014). 

Consequently, we need to obtain a matrix Q  

that relates nodal tractions to nodal equivalent 

forces on the BE-FE interface: 

 

ˆ ˆf Qp  (14) 

 

The global matrix Q  is obtained by 

assembly of local matrices for each element 

on the interface. Using isoparametric 

elements, we have: 
 

1 1

1 1
d de s t s t sJ s tt

 
  Q ( , ) ( , ) ( , )Φ Φ  (15) 

 

where ( , )s tΦ  is the matrix of shape 

functions and ( , )J s t  is the Jacobean of the 

transformation. Using Eqs. (14) and (5), we 

get the following stiffness matrix for the half-

space: 
 

b

 1
K QG  (16) 

 

NUMERICAL RESULTS 
 

To carry out a numerical investigation, a 

combined BE-FE program has been 

developed in the MATLAB programming 

language according to the formulations 

presented in the previous sections. In the 

solutions procedure, 3D 20-node 

isoparametric brick elements are used for the 

FE mesh and a conforming mesh of 8-node 

2D isoparametric elements are utilized for the 

TIHS. Moreover, 27 and 4 Gauss points are 

used for the integration of elements in the FE 

and BE programs, respectively. The mesh 

needed for modeling the structures are first 

created in the ABAQUS commercial 

software and then imported into the program 

as input. Needless to say, one may make the 

mesh for Finite Element part by himself. In 

what follows, we first demonstrate the 

accuracy and validity of the program 

prepared here by verifying the FE, BE and the 

combined parts, separately. It should be noted 

that only some special applications of the 
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general combined program can be compared 

with the available reported documents in the 

literature. At the end, a parametric study is 

carried out for the response of three types of 

common structural forms under the effect of 

time-harmonic loading. We should also note 

that we only need the equivalent stiffness 

matrix from the half-space and there is no 

need to impose any boundary conditions on 

the equivalent stiffness matrix. 

 

Validation 

 

A Cube with Distributed Time-Harmonic 

Loading 

In this part, a cubic structure is analyzed 

under some external tractions and the output 

is compared with the results of ABAQUS. To 

do so, a cube shown in Figure 2 with a 

dimension of 6 m in each side and filled by an 

isotropic material with mass density of
3K100 mg/  , shear modulus of 

6 210 mN/   and Poisson ratio of 0.25   

is considered. The bottom and the vertical 

surface boundaries are restrained against 

movement in the normal direction. A time-

harmonic distributed load with a magnitude 

of 
2100 mN/p   is applied on the top face of 

the cube. This problem has been solved with 

the use of the commercial software ABAQUS 

and the code written for the present work, 

where the results for the vertical displacement 

of the middle of the top face are shown in 

Figure 3. As seen, a perfect match is 

observed, which proves the validity and 

accuracy of the codes written in this research 

for the FE part.  
 

Circular Patch Loading 

To test the validity and accuracy of the 

Boundary Element code and the Green’s 

functions used, we apply in turn a uniform 

vertical and horizontal time-harmonic 

circular patch load on the surface of the TIHS. 

The mesh used to model the loaded area is 

shown in Figure 4. For this type of boundary 

value problem, a semi-analytical solution is 

available in the literature (Rahimian et al., 

2007). We define the dimensionless vertical 

and horizontal components of displacement 

as 0 0 44[ , ] [ , ]cu w a u w , where u  and w are 

the vertical and horizontal components of the 

displacement and a   is the radius of the 

circular patch load. The dimensionless 

frequency is also defined as
0 44/sa c   . 

We present the displacements for two groups 

of material constants as shown in Table 1. 

The engineering constants ,, ,,E GE G    

and    are related to the elastic constants ijc  

according to Eq. (11). We also take 0 3   in 

all cases. 

As seen in Figures 5 and 6, there exists an 

excellent agreement between the numerical 

results obtained in this work and the 

analytical solutions available in the literature. 

This shows that the 4-point Gauss quadrature 

used in evaluation of the element integrals is 

adequate for the constant load distribution. 

 
Table 1. Material constants used for verification of the BE code 

Material Constants 
Material Number 

  (GPa)  (GPa) G  (GPa) G (GPa) E  (GPa) E (GPa) 

0.25 0.25 20 20 50 50 1 (isotropic) 

0.25 0.25 20 20 150 50 2 
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Fig. 2. The mesh of a cube with a dimension of 6 m used for verification of the FE code 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of FE results from the current study and the commercial software ABAQUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. The mesh for the loaded area on the surface of the THIS 
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Fig. 5. Real and imaginary parts of dimensionless displacement in the horizontal direction when a uniform circular 

load is applied on the surface in the horizontal direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Real and imaginary parts of dimensionless displacement in the z direction when a vertical uniform circular 

load is applied on the surface of the half-space 

 

Rigid Square Foundation Bonded to an 

Isotropic Half-Space 

In this section, the problem of interaction 

of a square rigid massless foundation bonded 

to the surface of an isotropic half-space is 

investigated using the combined FE-BE 

program. The results of this investigation are 

compared with Guzina (2000) to show the 

accuracy of the numerical procedure used in 

this paper. To this end, a square foundation 
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with the length of 2 3 mb   and a thickness of 

0.5 mh   is considered. The elastic 

constants for the soil beneath this square 

foundation are defined as Pa50 ME  , 

1/ 3   and 32000 Kg/ms  . An 8×8×2 

partition for the mesh is used to obtain the 

solution, which is displayed in Figure 7. A 

uniform distributed vertical force is applied 

on the top face of the foundation in order to 

determine the vertical impedance ( )vvK  

values. To this end, the vertical displacement 

of the rigid foundation is determined with the 

use of the combined FE-BE program as a base 

for calculating the impedance function. 

Figure 8 shows the results of this study and 

those of Guzina (2000), simultaneously. It is 

interesting to note that for the values of the 

dimensionless frequency greater than about 

1.5, there exists almost an exact agreement 

compared with the results reported by Guzina 

(2000). This can be attributed to the fact that 

the nature of the singularity at the edges of the 

foundation changes as the frequency of 

excitation increases and also we expect 

generally a better performance from the 

quadratic isoparametric elements compared 

to the linear elements used in Guzina’s 

research.  

We can also carry out a convergence study 

for the stiffness values of a rectangular 

foundation in bonded contact with an 

isotropic half-space. Figure 9 depicts the 

values calculated by Guzina et al. and those 

obtained in the current study. Excellent 

agreement is observed for each mesh that was 

considered. 
 

Massive Circular Foundations on the 

Surface of the Half-Space 

In this section, we consider the vertical 

vibrations of a rigid massive circular 

foundation in contact with an isotropic 

medium as the last example for verification. 

Analytical solutions for this problem can be 

found in references such as Awojobi and 

Grootenhuis (1965) and Richart et al. (1970). 

These solutions were derived by assuming the 

traction distribution beneath the foundation to 

be the same as the static case. The 

dimensionless mass ratio is defined as 
3/ ( )sq m a , where m  is the total mass of 

the circular foundation, s  is the density of 

the soil medium and a  is the foundation 

radius. Figure 11 shows the solution over a 

dimensionless frequency range of 0~1.6 and 

for several values of the dimensionless mass 

ratio. The mesh used is also depicted in 

Figure 10. 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

Fig. 7. The 8×8×2 mesh of the square foundation and a portion of the half-space 
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Fig. 8. Comparison of the real part of the vertical impedance values for a rigid square foundation with those of 

Guzina (1996) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Convergence of the dimensionless stiffness values with increasing the number of nodes in the mesh 
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Fig. 10. The mesh of the circular foundation and a portion of the half-space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Relative displacements for circular foundations with different mass ratios 

 

The results follow the expected trend as 

the values of dimensionless frequency 

increases. A good match is also recognized 

for the higher values of the dimensionless 

mass ratio and the existing discrepancy can be 

attributed to the following reasons: 

1. The solutions in Richart et al. (1970) 

have been derived with the assumption that 

the distribution of tractions under the 

foundation for the dynamic case is the same 

as that obtained for the static case. 

2. The solution in the current study is for 

the bonded case, while those of the analytical 

solution are presented for the simpler 

problem of frictionless contact, and they are 

not exactly the same. 

3. The usual approximations associated 

with a numerical solution such as: a) 

numerical Gauss integration used over each 

element; b) approximations introduced by 

discretization of the domain; c) numerical 
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computation of the Hankel integrals. These 

approximations make some small error. 

4. Errors associated with conversion of 

the graph in Richart et al. (1970) to numbers 

that could be used for comparison. 

 

Parametric Study 

In the following sections, we investigate 

the effects of transverse isotropy of the elastic 

half-space on the dynamic response of three 

different types of not necessarily rigid 

superstructure, which are circular or square 

flexible foundations and a more general type 

of massive structure. In all these applications, 

the materials for TIHS are chosen from Table 

2. In this table Material 1 is for an isotropic 

material and is chosen as a reference for 

evaluation of the effect of the degree of 

anisotropy. Compared with the reference 

isotropic material, Materials 2 and 3 are 

selected to have larger values of E  and G , 

while Materials 4 and 5 have larger values for 

E   and Materials 6 and 7 have smaller values 

for G  . 
 

Circular and Square Flexible Foundations 
Consider a flexible circular foundation 

with a radius of 1.5a   m and elastic 

constants 20E   GPa, 0.2   and 

2400f   Kg/m3 bonded to the surface of a 

transversely isotropic half-space filled by one 

of the materials listed in Table 2. Figures 12-

14 show the vertical displacement of the 

central point of the foundation in terms of 

dimensionless frequency and different 

variation of elastic constants when a 

distributed load of 10 kN is applied on its 

upper surface. 

An interesting observation in the results 

for the circular foundation is that by 

increasing E  or ,E  the absolute value of both 

the real and imaginary parts of displacement 

decrease before the nondimensional 

frequency of 1.5. For the real part, this trend 

is reversed for nondimensional frequencies 

larger than 1.5, when E   increases. 

Moreover, the effect of increasing E   is much 

more significant on both the real and 

imaginary parts of displacement. This means 

that whenever / 1E E   it is more important 

to take the anisotropy into consideration.  

As it is observed in Figures 15-17, for the 

rectangular foundation, the general behavior 

is similar to the circular foundation. 

However, when E   is increased, the reversal 

of the direction of change for the real part 

does not happen in the frequency range 0~4 

anymore.  

 

Analysis of a General Structure 

Figure 18 depicts the vertical section of a 

common type of concrete structure for a 

reactor building. We consider three types of 

models with different geometric dimensions 

as stated in Table 3. The material constants 

for the concrete are taken as 30 GPaE  , 

0.2   and 
32400 Kg/m   and the 

materials for the soil are selected from the list 

described in Table 2. 

 

Table 2. Materials chosen for the parametric study 

Elastic Parameters 

Material 
/G G  /E E       

G 
(MPa) 

G
(MPa) 

E 
(MPa) 

E
(MPa) 

1.0 1.0 0.25 0.25 20 20 50 50 Mat 1 

1/2 0.5 0.25 0.25 20 40 50 100 Mat 2 

1/3 1/3 0.25 0.25 20 60 50 150 Mat 3 

1.0 2.0 0.25 0.25 20 20 100 50 Mat 4 

1.0 3.0 0.25 0.25 20 20 150 50 Mat 5 

1/2 1 0.25 0.25 10 20 50 50 Mat 6 

1/4 1 0.25 0.25 5 20 50 50 Mat 7 

 



Morshedifard, A. and Eskandari-Ghadi, M. 

 

110 
 

Table 3. Dimension parameters for different models 

Geometry H (m) D (m) R (m) t (m) 

Model 1 28.0 60.0 28.0 2.2 

Model 2 45.0 50.0 22.5 2.0 

Model 3 55.7 70.0 28.0 2.5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 12. Real and imaginary part of the vertical displacement of the central point of the circular flexible foundation 

when varies 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Fig. 13. Real and imaginary part of the vertical displacement of the central point of the circular flexible foundation 

when E   varies 

E
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Fig. 14. Real and imaginary part of the vertical displacement of the central point of the circular flexible foundation 

when G   varies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

   

  

 

 

 
 
 

 

Fig. 15. Real and imaginary part of the vertical displacement of the central point of the rectangular flexible 

foundation when E  varies 

× 10-4 
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Fig. 16. Real and imaginary part of the vertical displacement of the central point of the rectangular flexible 

foundation when E   varies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Real and imaginary part of the vertical displacement of the central point of the rectangular flexible 

foundation when  varies G 

× 10-4 

× 10-4 
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Fig. 18. Vertical plan of a typical concrete structure 

 

To investigate the response of the 

structure, a time-harmonic horizontal point 

load equal to 10 kN is applied on the top of 

the structure at point A. To observe the effects 

of taking the soil medium into consideration, 

we first present the results for the case, where 

the degrees of freedom on the bottom surface 

of the structure are constrained against 

movement in every direction, which 

describes a rigid base for the structure, as it is 

modeled in ordinary structural analysis. The 

results in Figure 19 are presented for a 

frequency range of 15~45 rad/sec. From this 

figure, we can extract the values of the natural 

vibration frequency of the structure. These 

values can of course be obtained using a 

simple eigenvalue analysis when the bottom 

of the structure is clamped. However, such an 

analysis is not possible when taking the 

underlying soil into account. Thus, we extract 

them from the graphs. As expected, the height 

of the structure plays an important role and as 

the height of the structure increases, the 

fundamental frequency of the structure 

decreases. 

Figures 20-22 illustrate the magnitude of 

maximum horizontal displacement of the 

structure when the soil medium is taken into 

consideration in the FE-BE code. The plots 

demonstrate how the dynamic behavior 

changes when each of the elastic parameters 

change for different models. 

The period ( 2 /T   ) for each model 

and for different materials has been listed in 

Table 4. The following observations can be 

made after a detailed analysis of this table and 

the graphs in Figures 20-22: 

1- A change in values of E  does not have 

a significant effect on the maximum values of 

displacement and mainly affects the period of 

the structure. 

2- Increasing the height of the structure 

results in an increase in the period, however 

the geometric parameter that has the most 

significant effect on the maximum 

displacement magnitude is the area of the 

foundation in contact with the TIHS. This is 

why the graphs for Model 2 lie between those 

of the first and third model. 

3- As the frequency of the excitation 

increases, the displacement values converge 

to a unique value for all of the materials 

considered. 

4- The dynamic response is more sensitive 

to a variation in values of E   andG  than a 

change in values of E , which means that the 
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degree of anisotropy defined as either /E E  

or /G G  is the more significant parameter. 

5- Taking SSI into account has a more 

dramatic effect on structures with higher 

periods. However, the consideration of 

transverse isotropy seems to have a more 

significant effect on structures with lower 

periods. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19. Maximum displacement for the three models in the vicinity of the first fundamental vibration frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Maximum displacement magnitude when E  changes for each model 
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Fig. 21. Maximum displacement magnitude when E   changes for each model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22. Maximum displacement magnitude when G   changes for each model 

× 10-4 

× 10-4 
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Table 4. Periods of the structures on different materials (seconds) 
Clamped 

Material 
Model 

7 6 5 4 3 2 1 

0.166 2.34 1.98 1.49 1.56 1.43 1.51 1.64 Model 1 

0.229 2.85 2.34 1.63 1.81 1.71 1.84 2.02 Model 2 

0.274 2.96 2.66 1.91 1.91 1.90 2.05 2.30 Model 3 

 

CONCLUSIONS 

 

In this paper, the dynamic analysis of general 

3D structures bonded to the surface of a 

transversely isotropic medium has been 

addressed. The structure has been modeled 

using the Finite Element method with 20-

node isoparametric brick elements. A 

conforming mesh of 8-node quadratic 

elements on the surface of the half-space has 

been considered for the Boundary Element 

analysis of the transversely isotropic half-

space. The BE procedure uses half-space 

Green’s functions for a transversely isotropic 

medium, the formulation of which has been 

presented in a concise form. The matrices 

computed for the half-space have been 

converted using appropriate techniques and 

assembled with the structure’s stiffness 

matrix. Using the program written for this 

paper, several verifications were carried out 

using some well-known examples from the 

literature. Finally, the effect of transverse 

isotropy has been studied for three different 

types of structures and the results have been 

presented for several materials and models. 

The results show that anisotropy of the soil 

medium can have significant effects on the 

dynamic behavior of the structure and since 

in natural soil deposits, this behavior is the 

norm rather than the exception, its inclusion 

is highly recommended. 
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NOTATION 

 
C  Structure’s damping matrix 

E  Young’s modulus in plane of transverse 

isotropy 

E   Young’s modulus normal to plane of 

transverse isotropy 

G   Matrix of influence coefficients 

G   Shear modulus in planes normal to the axis 

of symmetry 

G   Shear modulus in planes normal to plane of 

transverse isotropy 

I   Identity matrix 

( 1,2,...,6)qI q    Integrals present in the 

fundamental solutions 

( )nJ x   Bessel’s function of first kind and order 

n  
K  Structure’s stiffness matrix 

bK   Soil stiffness matrix 

f
K ( )  Dynamic stiffness matrix 

M  Structure’s mass matrix 

Q   A matrix relating nodal tractions to nodal 

equivalent forces 

T   Transformation matrix 

a    Radius of circular path and foundation 

( , 1,2,3)ijc i j    Elasticity constants 

i
c  Smoothness matrix 

f    Nodal equivalent forces 

m   Total mass of the foundation 

p   Nodal tractions 

p̂   Global nodal tractions (on the BE 

boundary) 
*

,( )
i p x  Traction Green’s tensor 

q    Dimensionless mass ratio 

r  Radial component in the cylindrical 

coordinate system 

u   Displacement vector 
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u   Velocity vector 

u   Acceleration vector 

û   Global nodal displacements (on the BE 

boundary) 
*

( , )
i

u x  Displacement Green’s tensor 

iju   Displacement in j direction when a point 

load is applied in the i  direction 

x    Position vector 

b  Boundary of the domain modeled by BEM 

I  The shared boundary between the BE and 

the FE regions 

Φ   Matrix of shape functions 

b  The TIHS’ domain 

f  Structure’s domain 

    Angular component in the cylindrical 

coordinate system 
   Lamé constant 

    Poisson’s ratio in the plane of transverse 

isotropy when the loading is in the same 

plane 

   Poisson’s ratio in the plane of transverse 

isotropy when the loading is normal to the 

plane of transverse isotropy 

    Hankel’s parameter 

   Density 

  Frequency of excitation 

0   Dimensionless frequency 
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