تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,511 |
تعداد مشاهده مقاله | 124,129,138 |
تعداد دریافت فایل اصل مقاله | 97,236,225 |
تحلیل تغییرات ماهانۀ ارتفاع لایۀ تروپوپاز بر روی ایران | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 9، دوره 49، شماره 1، فروردین 1396، صفحه 113-133 اصل مقاله (2.25 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2017.61583 | ||
نویسندگان | ||
حسن لشکری* 1؛ عباس علی داداشی رودباری2؛ زینب محمدی3 | ||
1دانشیار جغرافیای طبیعی، دانشگاه شهید بهشتی، دانشکدة علوم زمین | ||
2دانشجوی دکتری آبوهواشناسی شهری، دانشگاه شهید بهشتی، دانشکدة علوم زمین | ||
3دانشجوی دکتری آب و هواشناسی سینوپتیک، دانشگاه شهید بهشتی، دانشکدة علوم زمین | ||
چکیده | ||
تروپوپاز لایة انتقالی از وردسپهر به پوش سپهر است. این لایه تعیینکنندة حد بالایی و ضخامت وردسپهر است. در پژوهش حاضر از دادههای ژرفاسنج مادون قرمز اتمسفری (AIRS) سنجندة مودیس آکوا ماهواره (EOS) استفاده شد. این محصول به شکل پارامترهای ژئوفیزیکی است و در شبکهای به ابعاد 1×1 درجة قوسی توزیع شده است. این دادهها از 180- تا 180 طول جغرافیایی و 90 تا 90 عرض جغرافیایی موجودند که از سامانه تطبیقی پردازش مودیس (MODAPS) دریافت شدند. پس از بارگیری تصاویر مربوط به سالهای 2003 تا 2015 میلادی، دادهها وارد نرمافزار MATLAB شد و مقادیر ارتفاعی تروپوپاز برای ماتریسی به ابعاد 12×155 برای هر سال محاسبه شد (155 معرف مقادیر شبکههای محاط در مرز ایران و دوازده ماههای سالاند). نتایج حاصل از پردازشهای تصویر وارد محیط نرمافزار ArcGis10.2 شد و نقشههای هر ماه با استفاده از روش کریجینگ به واسطة کمترین مقدار خطا تهیه گردید. نتایج نشان داد در ماه فوریه بیشترین اختلاف ارتفاع بین جنوب و شمال کشور رخ میدهد. تقریباً در همة پهنة کشور منحنی همارتفاع موازی و مداریاند. در ماههای گرم سال ارتفاع تروپوپاز در جنوب شرق کاهش مییابد و بالاترین ارتفاع تروپوپاز در مرکز کشور رخ میدهد. | ||
کلیدواژهها | ||
ارتفاع لایة تروپوپاز؛ ایران؛ تروپوپاز؛ نیمرخ ارتفاعی تروپوپاز | ||
مراجع | ||
Ambaum, M. H., & Hoskins, B. J. (2002). The NAO troposphere–stratosphere connection. Journal of Climate, 15(14), 1969-1978.
Andrews, D. G., Holton, J. R., & Leovy, C. B. (1987). Middle atmosphere dynamics (No. 40). Academic press.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M. ... & Strow, L. L. (2003). AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 253-264.
Bonazzola, M. and Hayne, P.H. (2004). A trajectory-based study of the tropical tropopause region, Journal of Geophsical Reserch, Vol. 109, D20112, doi: 10.1029/2003JD004356,
Conaty, A.L.; Jusem, J.C.; Takacs, L.; Keyser, D. and Atlas, R. (2001). The Structure and Evolution of Extratropical Cyclones, Fronts, Jet Streams, and the Tropopause in the GEOS General Circulation Model, Bulletin of the American Meteorological Society, p. 1853-1867.
Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., & Mote, P. W. (2009). Tropical tropopause layer. Reviews of Geophysics, 47(1).
Hall, C. M., Hansen, G., Sigernes, F., & Kuyeng Ruiz, K. M. (2011). Tropopause height at 78° N 16° E: average seasonal variation 2007–2010. Atmospheric Chemistry and Physics, 11(11), 5485-5490.
Hardiman, S. C., Boutle, I. A., Bushell, A. C., Butchart, N., Cullen, M. J., Field, P. R., ... & O’Connor, F. M. (2015). Processes controlling tropical tropopause temperature and stratospheric water vapor in climate models. Journal of Climate, 28(16), 6516-6535.
Hiroaki, Hatsushika (2003). Stratospheric drain over Indonesia and dehydration within the tropical tropopause layer diagnosed by air parcel trajectories, Journal of Geophysical, 108(D19): 4610, doi: 10.1029/2002JD002986.
Hirschberg, P. A. (1989). Tropopause Undulations and the Development of Extratropical Cyclones.
Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N., ... & Morisette, J. T. (2002). An overview of MODIS Land data processing and product status. Remote sensing of Environment, 83(1), 3-15.
Lashkari, H.; Matkan, A. and Mohammadi, Z. (2016). Local and Time Changes over a 66-Year Period and Annual Relocation of Saudi Arabian Subtropical High Pressure, Open Journal of Geology, 6: 1080-1095. Doi: 10.4236/ojg. 2016.69081.
Liu, C. and Zipser, E.J. (2005). Global distribution of convectionpenetrating the tropical tropopause, J. Geophys, Res.110, D23104, doi: 10.1029/2005JD006063.
Liu, C. Y., Li, J., Weisz, E., Schmit, T. J., Ackerman, S. A., & Huang, H. L. (2008). Synergistic use of AIRS and MODIS radiance measurements for atmospheric profiling. Geophysical Research Letters, 35(21).
Pittman, J. V., Pan, L. L., Wei, J. C., Irion, F. W., Liu, X., Maddy, E. S., ... & Gao, R. S. (2009). Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. Journal of Geophysical Research: Atmospheres, 114(D24).
Reichler, T.; Dameris, M. and Sausen, R. (2003). Determining the tropopause height from gridded data, Geophysical research letters, 30(20).
Rigby, M. (1992). International Meteorological Vocabulary. Revised edition. Geneva, Switzerland, World Meteorological Organization, p. 636. ISBN 92-63-02182-1.
Shapiro, M. A., & Keyser, D. A. (1990). Fronts, jet streams, and the tropopause. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory.
Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., Van Noije, T. P. C., Wild, O., ... & Bergmann, D. J. (2006). Multimodel ensemble simulations of present‐day and near‐future tropospheric ozone. Journal of Geophysical Research: Atmospheres, 111(D8).
Williams, G.P. (2003). Jet sets, J. Meteor. Soc. Japan, 81: 439-476.
Williams, G.P. and Bryan, K. (2006). Ice age winds: an aquaplaned model, Journal of Climate, 19(9): 1706-1715. | ||
آمار تعداد مشاهده مقاله: 1,330 تعداد دریافت فایل اصل مقاله: 1,014 |