تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,962 |
تعداد دریافت فایل اصل مقاله | 97,206,529 |
بررسی توزیع فضایی عوامل مؤثر بر فرسایش پذیری خاک در منطقۀ خور و بیابانک | ||
اکوهیدرولوژی | ||
مقاله 22، دوره 4، شماره 2، تیر 1396، صفحه 561-571 اصل مقاله (589.07 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2017.61492 | ||
نویسندگان | ||
سید علی موسوی* 1؛ سید حجت موسوی2؛ ابوالفضل رنجبر فردوئی3؛ سید جواد ساداتی نژاد4 | ||
1دانشجوی دکتری بیابان زدایی، گروه مهندسی علوم بیابان، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان | ||
2استادیار گروه جغرافیا و اکوتوریسم، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان | ||
3دانشیار گروه مهندسی علوم بیابان، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان | ||
4دانشیار دانشکدۀ علوم و فنون نوین دانشگاه تهران | ||
چکیده | ||
در حال حاضر فرسایش یکی از معضلات مهم زیستمحیطی حوضههای آبخیز ایران بهشمار میرود و تعیین میزان رسوب و فرسایشپذیری خاک برای حفاظت و مدیریت منابع طبیعی بسیار حائز اهمیت است. بنابراین، هدف از پژوهش حاضر ارزیابی توزیع فضایی فرسایشپذیری خاک در منطقۀ خور و بیابانک و ارتباط آن با برخی خصوصیات فیزیکی خاک با استفاده از روشهای زمینآمار است. بدینمنظور تعداد 33 نمونه خاک در امتداد سه ترانسکت از واحد پلایا تا کوهستان برای تعیین مقادیر مؤلفههای ماسه، رس، سیلت، کربن آلی و مواد آلی، از عمق صفر تا 50 سانتیمتری برداشت شد. سپس از طریق روشهای آزمایشگاهی مقادیر پارامترهای یادشده اندازهگیری شد و مقدار عامل فرسایشپذیری (K) و شاخص فرسایشپذیری خاک (SEI) محاسبه شد. درنهایت، بهمنظور بررسی توزیع فضایی پارامترهای یادشده انواع روشهای میانیابی آزمایش و مناسبترین روش انتخاب شد. نتایج نشان داد برای توزیع فضایی مؤلفههای ماسه، رس و عامل K، روش تابع پایۀ شعاعی بهترتیب با RMSE 27/3، 22/3 و 0036/0، برای مؤلفههای کربن و مادۀ آلی روش کریجینگ ساده بهترتیب با RMSE 34/0 و 59/0، برای سیلت روش کریجینگ معمولی با RMSE 88/0، و برای شاخص SEI روش کریجینگ جهانی با RMSE 0014/0 مناسبترین روشهای میانیابی شناخته شدند. درنهایت، کمترین و بیشترین مقادیر عامل K با 025/0 و 07/0 تن در ساعت بر مگاژول میلیمتر و همچنین کمینه و بیشینۀ شاخص SEI با مقادیر 03/0 و 07/0 بهترتیب در قسمتهای شرقی، و غرب و شمال غربی منطقه گسترده شده است. | ||
کلیدواژهها | ||
بافت خاک؛ خور و بیابانک؛ زمین آمار؛ فرسایش پذیری | ||
مراجع | ||
منابع [1]. FAO/UNEP. Provisional methodology for assessment and mapping of desertification. FAO, Rome. 1984
[2]. Karam A, Safarian A, Hajje Foroshnia Sh. Estimation of soil erosion in the watershed zoning Mamlou (zaragh Tehran) using methods modified universal equation of soil erosion and the analytic hierarchy process. Researches in Earth Sciences. 2010; 1(2): 73-86. (In Persian)
[3]. Young R, Mutchler C. Edibility of some Minnesota soils. J. Soil Water Conserv. 1977; 32(3): 180–200.
[4]. Wallace A, Terry RE. Soil conditioners, soil quality and soil sustainability. Marcel Dekker, New York, NY, 1998: 1–41.
[5]. Sadeghi SHR, Kianei-e-Harchagani M, Saeedi P, Allafi Badi M. Assessing capability of RUSLE in estimation of storm’s sediment. Forth Conference on Sciences and Watershed Management Engineering of Iran. Karaj, Iran. 2008. (In Persian)
[6]. Wang GG, Gertner X, Anderson A. Uncertainty assessment of soil erodibility factor for revised universal soil loss equation. Catena. 2001; 46: 1-14.
[7]. Parysow P, Wang G, Gertner G, Anderson AB. Spatial uncertainty analysis for mapping soil erodibility based on joint sequential simulation. Catena. 2003; 736: 1-14.
[8]. Wischmeier WH, Mannering JV. Relation of soil properties to its erodibility. Soil Sci. Am. Proc. 1969; 33: 131-136.
[9]. Hoyos N. Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. Catena. 2005; 63: 85-108.
[10]. Rodriguez RR, Arbelo CD, Guerra JA, Natario MJS, Armas CM. Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena. 2006; 66: 228-235.
[11]. Charman PEV, Murphy BW. Soils (their properties and management). Second edition, Land and Water Conservation, New South Wales, Oxford, 2000: 206-212.
[12]. Duiker SW, Flanagan DC, Lal R. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena. 2001; 45: 103-121.
[13]. Miller RW, Gardiner DT. Soils in our environment. 8th edition. Prentice-Hall Inc. United State of America. 1998: 75-81.
[14]. Santos FL, Reis JL, Martins OC, Castanheria NL, Serralherio RP. Comparative assessment of infiltration, runoff and erosion of sprinkler irrigation soils. Biosystems Engineering. 2003; 86(3): 355-364.
[15]. Burrough PA. Sampling designs for quantifying map unit composition. In: Mausbach Mj, Wilding LP. (Eds), Spatial variability of soils and landforms. Soil Science Society American Journal. 1991; 28: 89-125.
[16]. Millward AA, Mersey JE. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena. 1999; 3: 109-129.
[17]. Wang G, Gertner G, Fang S, Anderson AB. Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogrammetric Engineering and Remote Sensing. 2003; 69: 889-898.
[18]. Goovaert P. Geostatistic in soil science: State of the art and perspective. Geoderma. 1999; 38:45- 93.
[19]. Deutsch CV. Geostatistical reservoir modeling. Oxford University Press. 2002.
[20]. Kariminazar M, Fakhire A, Fayznia S, Rashki SA, Mirsolayman SJ. Evaluation of methods for estimating the speed of wind erosion in plain Sistan. Journal Natural Resources. 2009; 62 (3): 405 -417. (In Persian)
[21]. Foster GR, Young RA, Romkens MJM, Onstad CA. Processes of soil erosion by water. In: Follett RF, and Stewart BA. Soil erosion and crop productivity. American Society of Agronomy, Inc., Soil Science Society of America, Madison, Wisconsin, USA. 1985: 137-159.
[22]. Rejman J, Turski R, Paluszek J. Spatial and temporal variability in erodibility of loess soil. Soil and Tillage Research. 1998; 46: 61-68.
[23]. Gee GW, Bauder JW. Particle size analysis, In: A. Klute (Ed), Methods of Soil Analysis. Part one and second edition, Agron. Monogr.9. ASA and SSSA, Madison, W.I. 1986; 404-407.
[24]. Klute A. Methods of soil analysis part I. Physical and mineralogical methods. 2nd Ed. Soil Science Society of America. 1986.
[25]. Chien YJ, Lee DY, Guo HY, Houng KH. Geostatical analysis of soil properties of mid-west Taiwan soils. Soil Science. 1997; 162: 291- 298.
[26]. Zhang K, Li S, Peng W, Yu B. Erodibility of agriculture soils and loess plateau of China. Soil and Illage. Res. 2004; 76: 157-165.
[27]. Wang G, Gertner G, Singh V, Shinkareva S, Parysow P, Anderson A. Spatial and temporal prediction and uncertainty of soil loss using the RUSLE: a case study of the rainfall runoff erosivity R Factor. Ecological Modelling. 2002; 153: 143-155.
[28]. Irvem A, Topalolu F, Uygur V. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. Journal of Hydrology. 2007; 336: 30-37.
[29]. Rodríguez RP, Marques MJ, Bienes R. Spatial variability of the soil erodibility parameters and their relation with the soil map at subgroup level. Environmental Sciences. 2007; 378 (1-2): 166-173.
[30]. Sokouti Oskouie R. Evaluation of structure of spatial variation of the soil erodibility in the Orumieh region, Proceedings of the 9th Congress on Soil. Tehran, Iran. 2005; 482-487. (In Persian)
[31]. Saremi Naeini MA, Zareian Jahromi M, Ekhtesasi MR, Mohammadian Behbahani A. Wind threshold velocity surviving by using Geo-statistics (case study: Yazd city). 10th National Congress on Soil Science. Karaj, Iran. 2007. (In Persian)
[32]. Wilson JP, Lorang MS. Spatial models of soil erosion and GIS. In spatial models and GIS. New potential and new models, Fotheringham AS, Wegener, M. (Eds). Taylor and Francis: Philadelphia, PA, 2000; 83-108.
[33]. Vaezi A, Bahrami HA, Sadeghi SHR, Mahdian MH. The new monograph to estimate erosion-risk factor (K) in the semi-arid region in the northwestern part of the territory of Iran. Journal of Soil and Water Sciences (Science and Technology of Agriculture and Natural Resources). 2009; 13(49): 69-80. (In Persian)
[34]. Nelson DW, Sommer LE. Total carbon, organic carbon, and organic matter. In: A.L. Page (ed.) Methods of Soil Analysis. 2nd ed. ASA Monogr. Amer. Soc. Agron. Madison. 1982; 9(2): 539- 579.
[35]. Wischmeier W, Smith D. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook No. 537. Washington DC, USA: U.S. 1978.
[36]. Renard KG, Foster GR, Weessies GA. McCool DK. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In: Yoder DC, editor. U.S. Department of Agriculture, Agriculture Handbook 703, Geomorphology 2002; 47(2–4): 189–209.
[37]. Webb NP, McGowan HA, Phinn SR, Leys JF, McTainsh GH. A model to predict land susceptibility to wind erosion in Western Queensland, Australia. Environmental Modelling & Software. 2009; 24: 214-227.
[38]. Mirzaee S. Vulnerability assessment and risk mapping using GIS Shahrekord plain groundwater pollution and DRASTIC model and SINTACS. Master's Thesis on Soil Science, Faculty of Agriculture, University of Shahrekord, 2009. (In Persian)
[39]. Faraji Sabokbar HS, Azizi Gh. Evaluate the accuracy of spatial interpolation, Case study: modeling Kardeh rainfall areas of Mashhad. Geographical Journal. 2006; 58: 1-15. (In Persian)
[40]. Anderson SH. An evaluation of spatial interpolation methods on air temperature in Phoenix. AZ. 2000.
[41]. Matkan A, Shakiba A, Yazdani A. Evaluate different methods of interpolation to estimate daily rainfall, Case study: Fars province. Territory. 2007; 13: 54-67. (In Persian) | ||
آمار تعداد مشاهده مقاله: 1,116 تعداد دریافت فایل اصل مقاله: 652 |