تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,090,425 |
تعداد دریافت فایل اصل مقاله | 97,194,090 |
ارزیابی اثر تغییر اقلیم بر رواناب با استفاده از مدل هیدرولوژیک (مطالعه موردی: حوزه آبخیز بازفت صمصامی) | ||
اکوهیدرولوژی | ||
مقاله 8، دوره 4، شماره 1، فروردین 1396، صفحه 89-102 اصل مقاله (856.65 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2017.60889 | ||
نویسندگان | ||
نوید دهقانی1؛ هدی قاسمیه* 2؛ سیدجواد ساداتی نژاد3؛ خلیل قربانی4 | ||
1دانشجوی دکتری علوم و مهندسی آبخیزداری دانشگاه کاشان | ||
2استادیار، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه کاشان | ||
3دانشیار، دانشکدۀ علوم و فنون نوین، دانشگاه تهران | ||
4دانشیار، دانشکدۀ مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان | ||
چکیده | ||
افزایش گازهای گلخانهای در چند دهۀ اخیر و افزایش دمای ناشی از آن، سبب برهمخوردن تعادل سیستم اقلیمی کرۀ زمین شده و تغییرات اقلیمی گستردهای را در اغلب نواحی کرۀ زمین بهوجود آورده است. سیاستهای راهبردی توسعه در این منطقه، بهدلیل نیاز به آب در منطقۀ مرکزی از یکسو و محدودیتهای منابع آب از سوی دیگر، با چالشی بزرگ روبهرو شده است. در این پژوهش، ابتدا مدل بارشـ رواناب WetSpa برای حوضۀ آبخیز بازفت صمصامی بهعنوان یکی از زیرحوضههای مهم حوضۀ آبخیز کارون واسنجی شد. سپس مقادیر دما و بارش برای دورۀ آتی براساس سناریوهای تغییر اقلیم با خروجیهای مدل چرخش عمومی جوّ HadCM3 برای سه سناریوی A1B، A2 و B1، با استفاده از مدل WG–LARS ریزمقیاس شدند. آنگاه بهمنظور شبیهسازی رواناب حوضه، دادهها به مدل WetSpa معرفی شد. در نهایت نتایج، کارایی مدل WG– LARS در برآورد باران و دما را تأیید کرد. همچنین نتایج نشان داد رواناب در دورۀ آماری 2011ـ 2040 و دورۀ آماری 2071ـ 2100 نسبت به دورۀ مشاهداتی در هر سه سناریو بهترتیب بهمیزان متوسط 86/8 و 83/4 درصد افزایش پیدا کرده و در دورۀ آماری 2041ـ 2070 بهمیزان متوسط 25/7 درصد کاهش یافته است. این موضوع، نشاندهندۀ تأثیر تغییر اقلیم بر رواناب در دورۀ آیندۀ میانی در حوضۀ آبخیز مطالعاتی است. بنابراین، با توجه به نتایج بهدستآمده، اتخاذ سیاستهای برنامهریزی بهمنظور سازگاری با تغییر اقلیم برای حوضۀ آبخیز بازفت صمصامی ضرورت دارد. | ||
کلیدواژهها | ||
تغییر اقلیم؛ حوضۀ آبخیز بازفت صمصامی؛ سناریو؛ مدلسازی هیدرولوژیک (WetSpa)؛ LARS-WG | ||
مراجع | ||
[1]. IPCC (Intergovernmental Panel on Climate Change). 2007 Summary for policy makers. In: IPCC. Climate change: The physical Science basic, Contribution of working group first to the Fourth assessment report of the intergovernmental panel on climate change, Cambridge university press. 2007; 450 p.
[2]. Alizade A, Sayyari N, Hesami-Kermani MR, Banayan Avval, M, Farid Hosseini E, Assessment of effects of climate change on water resources and agriculture water using, Water and Soil Journal, 2010; (24): 815-835.
[3]. Zeinivand H., and De Smedt F, Spatially distributed modeling of soil erosion and sediment transport at watershed scale, World Environmental & Water Resources Congress (EWRI), 2009; 17-21 May, Kansas City, USA.
[4]. Zehabion B, Goodarzi MR, Massah A. Application of SWAT model for estimating runoff in future periods affected by climate change, Journal of Climatology. 2010; third and fourth number, 43-58 [Persian].
[5]. Minville M, Brissette F, Leconte R. Uncertainty of the impact of climate change on the hydrology of a nordic watershed, Journal of Hydrology, 2008; 358 (1-2): 70– 83.
[6]. Abdo KS, Fiseha BM, Rientjes T, Gieske ASM, and Haile AT., Assessment of climate change impacts on the
hydrology of Gilgel Abay catchment in Lake Tana Basin, Ethiopia. Hydrological Processes. 2009; 23 (26): 3661-3669.
[7]. Kamal A, Massah Bavani A, Gudarzi M. Assessment of Hydrological impacts of climate change on Qareh Soo sub-basin, 2nd National Congress on Dam Construction, Islamic Azad University of Zanjan, Zanjan, 2010; Iran, 10 pp. [Persian].
[8]. Liu X, Coulibaly P. Downscaling ensemble weather predictions for improved week-2 hydrologic forecasting. Journal of Hydrometeorology. 2011; (12): 1564-1580.
[9]. Laleh Siyah M, Fatahi E, Mahsafar H. The impact of climate change on river basin runoff Karum, the first national conference of the desert. 2012; 15 p [Persian].
[10]. Silberstein R, Aryal D, Jacqueline P, Mark B, Michael C, Stephen B, Lidia H, Geoffrey B, Michele VN, McFarlane D. Climate change and runoff in south-western Australia. Journal of Hydrology. 2012; 475: 441-455
[11]. Hamidiyan M, Soltani J, Ghandehari GH. Assess the impact of climate change on runoff chatchment Bar and Taghan Nishapurtimes the output of general circulation models (HadCM3). The first National Conference on Water and meteorology Iran, Graduate University of Advanced Technology, Kerman, Iran. 2013; 11 p. [Persian].
[12]. Bavay M, Grünewald T, Lehning M. Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Adv. Water Resources. 2013; (55): 4-16.
[13]. Ashofteh PS, Bozorg Hadad O. Provide probabilistic approach to evaluate the effects of climate change on runoff. Journal of Water Resources, the sixth year.2013; 66-51 [Persian].
[14]. Lei H, Yang D, Huang M. Impacts of climate change and vegetation dynamics on runoff in the mountainous region of the Haihe River basin in the past five decades. Journal of Hydrology, 2014; (511): 786-79.
[15]. Sohrabiyan E, Meftah M, Ghorbani KH, Goliyan S, Zakeriniya M. The effect of climate change on hydrology model with the involvement of discharge areas (Case Study: Galikesh Area in Golestan Province). Journal of Soil and Water Conservation, the second number. 2014 ; 111 125. [Persian].
[16]. Hosseini SH, Ghorbani MA, Massah A. Rainfall-runoff modeling in the field of climate change in order to predict future trends Sofi Chay. Journal of Watershed Management.2015; Issue 11. [Persian].
[17]. Godarzi M, Salahi B, Hosseini SA. The effect of climate change on surface runoff changes (Case Study: Oroomeyeh). Ecohydrology. 2015; (2): 175-189. [Persian].
[18]. Zeinivand H., and De Smedt F, Spatially distributed modeling of soil erosion and sediment transport at watershed scale, World Environmental & Water Resources Congress (EWRI), 2009; 17-21 May, Kansas City, USA.
[19]. Semenov, MA, Brooks RJ, BarrowEM, Richardson CW, Comparison of the WGEN and LARS-WG stochastic weather generators in diver’s climates, Climate Research, 1998; (10): 95-107.
[20]. Wang Z, Batelaan O, De Smedt F. “A distributed model for Water and Energy Transfer between Soil, Plants and Atmosphere”. Journal of Physical Chemistry Earth, 1996; 21:189-193.
[21]. Liu YB., De Smet F, WetSpa of Manual, 2004; 1-126.
[22]. Liu YB, De Smedt F, WetSpa Extension, A GIS-based hydrologic model for flood prediction and watershed management and erosion and sediment transport simulation, Documentation and User Manual. 2004; 155 PP.
[23]. Talebmorad H, The effects of climate change on surface and underground water resources comprehensive hydrological model HydroGeoSphere in Hamedan-Bahar plain, Master Thesis, College of Agriculture, Isfahan University of Technology.2011
[24]. Bahremand A, Simulating the effects of reforestation on floods using spatially distributed hydrologic modeling and GIS. PhD thesis of Department of Hydrology and Hydraulic Engineering, Vrije universiteity Brussel, Brussels, Belgium. 2006; 150
[25]. Nurmohamed R, Naipal S, De Smedt F, Hydrologic modeling of the upper suriname river basin using WetSpa and Arcview GIS, Journal of Spatial Hydrology, 2006; 6 (1): 1-17.
[26]. Zeinivand H., and De Smedt F, Prediction of snowmelt floods with a distributed hydrological model using a physical snow mass and energy balance approach, Natural Hazards Journal, 2010; 54 (2): 451-468.
[27]. Safari A, De Smedt F, Moreda F, WetSpa model application in the distributed model intercomparison project (DMIP2). Journal of Hydrology. 2012; (418): 78-89.
| ||
آمار تعداد مشاهده مقاله: 1,660 تعداد دریافت فایل اصل مقاله: 1,711 |