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ABSTRACT    

This paper addresses the design of an observer-based fault 
diagnosis scheme, which is applied to some of the sensors and 
actuators of a wind turbine benchmark model. The methodology 
is based on a modified sliding mode observer (SMO) that allows 
accurate reconstruction of multiple sensor or actuator faults 
occurring simultaneously. The faults are reconstructed using the 
equivalent output error injection signal. A well-known validated 
wind turbine benchmark model, developed by Aalborg University 
and KK-electronic a/c, is utilized to evaluate the FDD scheme. 
Different sensors and actuator fault scenarios are simulated in the 
drive train, generator, and pitch & blade subsystems of the 
benchmark model, and attempts have been made to estimate 
these faults via the proposed modified SMO. The simulation results 
confirm the effectiveness of the proposed diagnosis scheme, and 
the faults are well detected, isolated, and reconstructed in the 
presence of the measurement noise. 
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1. Introduction 

Wind turbines are the most growing renewable 
energy systems excited by a completely 
random wind profile. Nonlinear dynamics, 
operation in uncertain environments, and 
experiencing large disturbances are the 
highlighted characteristics of these systems 
[1]. Despite applying advanced technology in 
the design and manufacturing of the wind 
turbine, the maintenance of today’s wind 
turbines is still time-consuming and expensive 
[2]. Advanced fault diagnosis and fault-
tolerant schemes implemented in the modern 
wind turbine can result in high reliability and 
efficient operation, and, accordingly, produce 
economically justifiable electrical energy [3-
4]. 
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 Hardware sensor-based and model-based 
methods are the most common fault diagnosis 
schemes implemented in the wind turbine [5]. 
In the sensor-based method, some system 
characteristics, such as temperature, 
vibration, and acoustic emission, among 
others, are monitored and analysed with the 
use of some expensive sensors [6-7]. 

In the analytical model-based method, a 
mathematical model by the help of sensor’s 
measurements is used to continuously 
monitor wind turbines. Hence, many works 
have been performed on model-based fault 
diagnosis of wind turbines in recent years, 
following the presentation of the wind turbine 
benchmark model developed by Odgaard et 
al. [3], [8]. Some of these papers are 
reviewed in the following. 

In [9] and [10], Kalman filter (KF)-based 
approaches for  fault  detection  and  isolation  
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(FDI) are presented. These approaches use the 
KF and generalized likelihood ratio test for 
residual generation and evaluation. Laouti et 
al. proposed an FDI scheme based on a 
combination of Kalman-like observer and 
support vector machines [11]. The FDI 
scheme was evaluated using a wind turbine 
benchmark with a real wind sequence. Robust 
residual filtering and parity equations were 
combined to propose an FDI scheme in [12]. 

Estimation of the effective wind speed is 
highly important as the wind speed sensors 
provide quite noisy measurements [5]. A wind 
speed estimator has been proposed in [13] to 
provide an effective wind speed. The FDI 
scheme utilizes a set-membership method to 
detect and isolate some faults in a wind 
turbine model. Estimation of the effective 
wind speed is also found in [13-14]. 

In [15-16], the unknown input observer is 
proposed for the detection of sensor faults in 
the drive train and converter subsystems of 
the benchmark model. An adaptive actuator 
fault estimation scheme is proposed by 
Simani et al., which is designed via the 
nonlinear geometric approach. Reconstruction 
of the actuator faults provided by adaptive 
filters is exploited to generate the residuals 
[18], [19]. 

Sliding mode observers (SMOs) benefit 
from the robustness to disturbances and 
modelling uncertainties. For this reason, the 
FDD schemes using SMO have recently been 
investigated thoroughly [20]-[24].     

In [25], an SMO for the FDI of sensor faults 
in a wind turbine model is proposed. The 
actuator faults in the pitch subsystems of the 
wind turbine are regarded as sensor faults. 
Proposing a bank of SMOs, the output signal 
is estimated, and the simulated faults are 
detected and isolated properly.  

Several simulation models have been 
developed for wind turbines by various 
laboratories around the world. The first 
verified & validated benchmark model for 
FDI and FTC purposes was developed by KK-
electronic a/c and Aalborg University; it was 
introduced by Odgaard et al. [3], [8]. Wind 
turbines are complicated nonlinear systems, 
and it is very challenging to develop highly 
accurate models for their subsystems so as to 
make the FDI process very sophisticated.  
This benchmark model deals with the wind 
turbine at a system level and provides the 
models with enough accuracy for different 
subsystems of the wind turbine. 

Most of the papers concentrating on the 
FDI of this benchmark model only detect  and  

 isolate the faults and scarcely give any 
information about the fault magnitude. FTC 
schemes, in particular, require the fault 
magnitude. The fault diagnosis scheme 
proposed in this paper can faithfully 
reconstruct the faults and provide the faults 
magnitude along with the fault detection and 
isolation process. In other words, the novelty 
of this work is the reconstruction of the fault 
signals and giving information about the fault 
magnitude. So, the proposed FDD scheme can 
be used for FTC purposes. 

Particularly in this paper, a modified SMO-
based fault estimation scheme is presented to 
detect, isolate, and estimate sensor and 
actuator faults in the benchmark model 
subsystems. Some modifications to the 
discontinuous switching term of the observer 
are suggested in this paper; they allow the 
accurate reconstruction of multiple sensors or 
actuator faults occurring simultaneously. Five 
fault scenarios are considered in the generator 
and drive train subsystems, occurring at the 
rotor speed, generator speed, and generator 
torque sensors. One of these scenarios 
simulates the simultaneous fault occurrence. 
Four fault scenarios are also considered in the 
pitch and blade subsystems, occurring at pitch 
hydraulic actuators and pitch angle 
measurement sensors. The simulations are 
implemented in the MATLAB Simulink 
environment by considering sensor faults, 
actuator faults, and measurement noise. The 
fault signals are well detected, isolated, and 
reconstructed by the proposed SMO. 

The second validated and verified 
benchmark model for FDI and FTC purposes 
was developed by the U.S. National 
Renewable Energy Laboratory (NREL) [26]. 
This benchmark incorporates the FAST aero 
elastic simulator code (fatigue, aerodynamics, 
structures, and turbulence), which models the 
WT with 24 degrees of freedom [27]. Since 
this benchmark is a higher-fidelity and more 
realistic wind turbine model with some 
uncertainty sources, it requires more 
sophisticated and robust FDD schemes. 
Investigation of robust SMO-based FDD 
schemes to handle the faults in this 
benchmark model is regarded as the future 
work of the authors. 

The paper is organized as the following: 
Section 2 describes the wind turbine 
benchmark model in brief. The SMO structure 
is presented in Section 3. The observer design 
procedure, fault scenarios, and numerical 
simulation results for the drive train and 
generator    subsystems     are    described    in  
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Section 4. Section 5 aims at the sensor and 
actuator fault diagnosis of the pitch 
subsystem. Finally, Section 6 concludes the 
paper. 

 
2.Wind turbine benchmark model 

 
The FDI scheme proposed in this paper and 
the fault scenarios are simulated in a well-
known wind turbine benchmark model 
presented by Odgaard et al. [3], [8]. This is 
the first validated and verified test benchmark 
model developed by KK-electronic a/c and 
Aalborg University to evaluate the fault 
detection and accommodation schemes. This 
benchmark model deals with the wind turbine 
at a system level and provides the models 
with enough accuracy for different 
subsystems of the wind turbine.   

 The system overview of this generic 4.8 
MW wind turbine benchmark model is shown 
in Fig.1, where    is the real wind speed, 
     is the measured wind speed,    is the 
rotor torque,    is the generator torque,      is 

the measured generator torque,    is the rotor 
rotational speed,      is the measured rotor 
speed,    is the generator rotational speed, 
     is the measured generator speed,    is 
the blade reference pitch angle,    is the 
measured pitch angle,    is the wind turbine 
nominal power, and    is the wind turbine 
generated power. 

Blade & pitch, drive train, generator & 
converter, and controller are the main 
subsystems of this three-blade horizontal-axis 
wind turbine. The wind speed profile has a 
stochastic manner and is taken from the real 
measured wind data from a wind park. 

 2.1.Wind model 
 

In this benchmark model, the wind profile 
associated with each blade has a stochastic 
manner and is a bit different from another 
blade. These stochastic profiles are generated 
using a wind model that describes the 
stochastic wind behaviour as well as wind 
shear effects and tower shadow effects. The 
input of the wind model is a sequence of real 
wind speed measurements from a wind park. 
See [8] for more details. 

 
2.2.Pitch & Blade system 
 

This subsystem includes the aerodynamic 
model, the wind model, and the pitch model. 
The aerodynamic torque (  ), is calculated 
using the aerodynamic model by the 
following expression: 

   
      (   )  

 

 
 

(1) 

in which R is the radius of the blades,    is 
the wind speed, and   (   ) is a mapping of 
the torque coefficients depending on the tip 

speed ratio (  
    

  
) and the pitch angle ( ). 

This mapping is given as a lookup table in the 
benchmark and is shown in Fig.2. 

The hydraulic pitch actuator for each pitch 
subsystem is modelled by acceptable accuracy 
using a second-order closed-loop transfer 
function between the measured pitch angle   
and its reference    as [8]: 

 ( )

  ( )
 

  
 

             
  

(2) 

   is provided by the wind turbine controller.  
 

 
Fig.1. Overview of the benchmark model [3] 

 



16 Mostafa Rahnavard et al./ Energy Equip. Sys. / Vol. 5/No1/March 2017 

 

A transfer function is attached to all the three 
pitch systems.      are the damping factor 
and the natural frequency, respectively. In 
case of no fault, the damping factors are equal 
for the three pitch systems. In case of fault 
occurring in a pitch system, the parameters of 
the faulty system might be different from the 
others. 
 

2.3.Drive train model 
 
The drive train subsystem aims to transfer the 
aerodynamic torque from the rotor side to the 
generator side. The rotational speed from the 
rotor side to the generator side is increased via 
a gearbox. The drive train system is modelled 
by a two-mass spring damper model as the 
following: 

   ̇ ( )       ( )      ( ) 

               (      )  ( )  
   

  
  ( ) 

(3) 

 

 
   ̇ ( )  

      

  
 ( ) 

 
      

  

  ( )  (
      

  
 

   )  ( ) 

     ( ) 

(4) 

 ̇( )     ( )  
 

  
  ( ) (5) 

The model parameter definitions are 
described in Table 1. 
 

2.4.Generator & converter model 
 
At a system level of wind turbine, the 
generator  and   converter   subsystem  can  be 
modelled by a first-order transfer function: 

    ( )

    ( )
 

 

        
 

(6) 

in which     is the generator and converter 
model parameter. 

 

 
Fig.2. Torque coefficient Cq as a function of the tip speed ratio and the pitch angle [8] 

 
Table 1. Parameter description of the drive train [8] 

  ( )   ( )  ( ) 

Rotor speed Generator speed Torsion angle of the drive train 

     ( )     ( )    
Rotor torque Generator torque Rotor moment of inertia 

          

Gear ratio Efficiency of the drive 
train 

Generator moment of inertia 

          

Rotor viscous friction 
Generator viscous 

friction 
Torsion stiffness of the drive 

train 

      
Torsion damping of the 

drive train 
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3.Sliding mode Observer design 
 
The fault estimation scheme employed in this 
paper relies on the SMO structure proposed 
by Edwards et al. [21], [28, ch. 4], which 
provides real-time estimation of sensor and 
actuator faults. It is briefly described in the 
following: 

Consider the linear system subject to 
actuator and sensor faults described by 

 ̇( )    ( )    ( )       ( )  (7) 

 ( )    ( )      ( ) (8) 

It is argued in [21] that there is a linear 
change of coordinates       in such a way 
that in the new coordinate system 

 ̇ ( )       ( )       ( )
    ( ) 

(9) 

 ̇ ( )       ( )       ( ) 
    ( )        ( ) 

(10) 

 ( )    ( ) (11) 

Referring to [20, Section 4.3],       . 
The system of (7) and (8) are first transformed 
by the matrix T and then the second 
transformation is done by   . T and    are 
computed from (12) and (13).    is a p*p 
orthogonal matrix as (14), where    
    .           is determined by solving 
the matrix equation            and 
         . More details can be found in [20, 
21] 

  [
       

   
] 

(12) 

   [
      

   
 ] (13) 

     [
 

  
] (14) 

After applying the change of coordinate 
(  ) and rewriting the system of Eqs. (7), (8) 
in the canonical form of (9)–(11), the observer 
finally has the structure of Eq. (15), where    
is the output estimation error,   is the sliding 
term (as Eq.(16)), and       are the design 
matrices (as Eq.(17)).  
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 ̂   ( )  (          
     )

    

    
   

       
 

 
(19) 

 

 

  
   is a stable design matrix;   is a 

Lyapunov matrix for   
  ; and the scalar   is 

the upper bound of the fault. Finally, the 
actuator and sensor faults are reconstructed 
using the so-called ‘equivalent output error 
injection’ as Eqs. (18),(19). For more details, 
 

3.1.Modifications to the switching term 
 
Some modifications to the switching term 
(16) are suggested in this paper to enhance the 
accuracy of the fault reconstruction. The rotor 
speed, the generator speed, and the generator 
torque are measured with the appropriate 
sensors, and they are considered as the system 
outputs. These sensor outputs are of the order 
of the magnitude of 1, 1e2, and 1e4, 
respectively. Consequently, the faults 
occurring in these sensors differ in magnitude. 
Also, the elements of the output estimation 
error vector (  ) have different magnitudes. 
For the occurrence of the sliding motion, the 
proper choice of γ is crucial and the accuracy 
of the fault reconstruction is highly dependent 
on the proper selection of the scalar γ. In case 
multiple sensor faults occur in the system, the 
discontinuous switching term with the 
structure of (16) imposes a limitation on the 
fault reconstruction and all the faults are not 
estimated correctly with this structure. To 
address this problem, two modifications are 
suggested in this paper. 
1- The output estimation error    is replaced 

with a weighted one:     , where the 
weighting matrix W is a diagonal matrix 
with a reciprocal of the average values of 
the output components as                       
        (         )  

    (       ⁄           ⁄  ). With this 
modification, the components of the 
modified output estimation error      
become the comparable order of magnitude. 
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The term    aims at scaling the output 
estimation error. Since the stochastic wind 
speed considered in this paper is the full 
load speed,            is considered as equal 
to the nominal value of the i-th output in 
the full load region., i.e                  

              
   

   
    

               
   

   
,  

                    . 
2- The scalar gain γ is replaced by a positive 

definite diagonal matrix: 
      (       ). This modification 
suggests the individual gains for faults with 
a different order of magnitude. 
These modifications scale the output 

estimation error and set a private gain for each 
fault. This leads to the accurate reconstruction 
of all faults when multiple sensors with 
different orders of measurements are faulty. 
By applying these modifications, the 
switching term   is revised as: 
 

 {
     

     

       
                

                                                  

} 

 
 

(20) 

For simulation, a continuous form of   is 
utilized. The reconstruction of the actuator 
and sensor faults are modified as: 

 ̂   ( )       

 (  
   )

    
 

     

         
 

 
(21) 

 ̂   ( )  (          
     )

   
   

 
     

         
 

 
 
 

(22) 

4.Drive train and generator sensor fault 
reconstruction 

 
Considering the benchmark drive train and 
generator models, the state space of the 
system, including the sensor faults, can be 
written as: 

 

{

   
   
   

}  [
    
    
    

]{

  

  

 
    

}

 {

   
 

   

     

} 

 
 
 
 
 
 

(24) 

where    
 is the measurement of the 

generator speed,    
 is the generator speed 

sensor fault,     is the measurement of the 
rotor speed,    

 is the rotor speed sensor 
fault,    

 is the measurement of the generator 

torque, and      
 is the generator torque 

sensor fault. 
 

4.1 Observer design 
 
Regarding the system representation of Eqs. 
(23) and (24), as compared with Eqs. (7) and 
(8), there were attempts to design an  SMO  to 
estimate the sensor faults (    ( )), i.e.,     

, 

   
,      

. In this section,     ( ) is equal to 

zero. It should be noted that      (the second 
input in [23]) is provided by the wind turbine 
controller. The aerodynamic torque,      , is 
the main source of excitation of the system, 
which causes the WT to rotate. This torque is 
determined from Eq.(1) as the observer first 
input.   

The proposed SMO observer has the 
structure of (15) with the modified weighted 
switching term as (20) and the sensor fault 
reconstruction vector as (19) Using an 
algorithm similar to the one proposed in [20], 
it can finally be shown that the system 
described in Eqs. (23) and (24) is transformed 
into a canonical form with the state space 
matrices: 
 

 [
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(23) 
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]    

  [
    
    
    

]   

  [

 
       

 
 

] 

 
 
 
 
 
 
 
 
 

(25) 

The observer design parameters are 
considered as: 

  
       {              }, 

       (            )  

       (
 

   
 

 

   
 

 

     ), and        . 
 
The proposed observer is used to reconstruct 
the sensor faults in various scenarios. 
Assuring that the sliding motion has occurred, 
the sensor faults are reconstructed using the 
‘equivalent output error injection signal’ from 
(19). The sensor fault scenarios are described 
in the following section. 
 

4.2 Fault scenarios and wind input 
 
The drive train and generator model 
parameters are like the benchmark ones and 
are listed in Table 2. A stochastic wind input 
profile, taken from the real wind speed 
measurement of a wind park [8], is used in the 
simulation and illustrated in Fig.3. All five 
representative sensor fault cases, as Table 3, 
are   simulated    in    the   benchmark   model.  

 Simulations for the fault cases 1–1 to 1–4 are 
in the absence of measurement noise, while in 
the fault case 1–5 measurement noise is 
present. 

 
4.3 Simulation results 

 
Fault case 1–1 
Figure 4 shows the actual and estimated fault 
values in an intermittent fault scenario starting 
from 2s and ending at 5s. This fault case 
realizes the variable amplitude constant bias 
in the generator torque sensor. Estimation 
overshoots or undershoots at the time of 
changing the fault magnitude, but the 
estimation immediately reaches the actual 
value as the dynamics of the observer is very 
fast. It is seen that the accurate reconstruction 
of the fault signal is provided by the proposed 
observer. 
 
Fault case 1–2 
The generator speed sensor fault is simulated 
to start from 17s and end at 25s as Fig.5 (fault 
case 1–2). The reconstructed fault by SMO 
chatters a little around the actual fault, but 
provides a relatively accurate estimation. 
 
Fault case 1–3 
The    rotor    speed    sensor   experiences   an 
intermittent bias fault starting from 27s and 
ending at 30s. Figure 6 shows the simulated 
fault compared to the estimated one in which 
sufficiently good estimation is observed. 
 
Fault case 1–4 
To prove the  effectiveness  of  modifying  the  

 
Table 2. Drive train and generator model parameters [8] 

    (
   

   
)   (

   

   
)   (

   

   
)       (

  

   
) 

775.49 7.11 45.6 95          

      (     )   (     )     (
   

   
)  

0.97         390 50  

 

Table 3. List of the simulated faults in the drive train and generator subsystems 

Fault case Description 

Fault case 1–1 Rectangular intermittent fault in the generator torque sensor 

Fault case 1–2 Saw tooth fault in the generator speed sensor 

Fault case 1–3 Rectangular intermittent fault in the rotor speed sensor 

Fault case 1–4 Simultaneous biases in all sensors 

Fault case 1–5 Generator speed sensor fault in the presence of measurement noise 
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switching term, a simultaneous scenario is 
considered. The fault case 1–4 suggests a 
scenario in which the sensor faults occur 
simultaneously. A bias of 1000 N.m in the 
generator torque sensor within 32s–38s, a bias 
of 20 rad/sec in the generator speed sensor 
within 34s–38s, and a bias of -0.2 rad/sec in 
the rotor speed sensor within 36s–38s are 
simulated in the benchmark model. For all 
sensors, the estimated faults reveal a high 
agreement with the actual ones, although a 
little variation exists at 32s, 34s, and 36s 
(starting a new fault). An SMO with an 
unmodified switching term such as (16) can 
never faithfully estimate all the simulated 
simultaneous faults. The simulated and 
estimated faults for the generator torque 
sensor are shown in Fig.7. 

All the already simulated  faults  are  in  the 

 absence of measurement noise. Considering 
the benchmark generator speed sensor noise 
with a standard deviation of 0.05 rad/sec, an 
intermittent simulated fault, compared to the 
estimated one, is reported as Fig.8. The fault 
signal is well reconstructed even at the 
presence of measurement noise. Since the 
designed observer does not decouple the 
sensor fault from sensor noise, the 
measurement noise is reflected in the 
reconstructed fault. So, the estimated fault is 
passed through an appropriate low-pass filter 
to reduce the noise effect. Although the low-
pass filter implies a little delay on the 
estimation, it considerably reduces the noise 
effect. Similarly, sufficiently good 
reconstruction of fault signals is achieved for 
rotor speed and generator torque sensors in 
the presence of measurement noise. 

 

 
Fig.3. Stochastic wind speed profile used in the simulations 

 

 
Fig.4. Generator torque sensor simulated and real-time estimated faults (fault case 1–1) 
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Fig.5. Generator speed sensor simulated and real-time estimated faults (fault case 1–2) 

 
 

 

Fig. 6. Rotor speed sensor simulated and real-time estimated faults (fault case 1–3) 
 
 

 

Fig.7. Generator torque sensor simulated and real-time estimated faults (fault case 1–4) 
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Fig.8. Generator speed sensor actual and estimated faults in the presence of measurement noise (fault case 1–5) 
 

5.Pitch subsystem fault diagnosis 
 

In this section, fault diagnosis of pitch 
actuators and sensors is investigated. In fault-
free conditions,          are assumed to be 
the same for three pitch actuators. However, 
in case of a fault in a pitch actuator, these 
parameters are different from one pitch 
actuator to another. In order to model the 
hydraulic power abrupt drop in a pitch 
actuator, these parameters in the transfer 
function are changed to     and   . In this 
paper, these parameters are considered as: 
     ,                 ,        , and 
                 [8].  

 
5.1 Fault detection and isolation scheme 

 
First, some sensor residual signals are defined 
as: 
   ( )     ( )     ( )        (26) 

where     is the i-th pitch subsystem position 
measurement. To minimize the effect of 
measurement noise, the residuals are passed 
through  appropriate    low- pass   filters.   The 

 the actuator fault eventually affects the 
measurement of the pitch angle, some of 
residuals deviate significantly from zero. For 
instance, the occurrence of faults in pitch 
actuator 1 results in    ,                 
deviating significantly from zero. So, when 
the residuals deviate significantly from zero, it 
means that a certain fault has occurred in the 
system. 

Recalling from the Eq.(1), the aerodynamic 
torque is a function of the pitch angle. 
Consider the between these situation when a 
fault occurs in one of the pitch actuators, the 
produced aerodynamic torque (so-called 
            ) would be different from the 
aerodynamic torque in the fault-free condition 
(so-called              ). The difference 
between these torques constitutes the 
aerodynamic torque fault (             

                    
), which is caused by a 

fault in the pitch actuator. In faulty conditions, 
the aerodynamic torque entering the state 
space is a faulty torque and hence the state 
space Eq. (23) can be rewritten as: 
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 ̇
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}  
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 ]
 
 
 
 

      
 

 
 
 
 

(27) 

 
reference pitch angle is the same for all pitch 
subsystems and hence     tends to zero in 
fault-free conditions. Since the  occurrence  of 

 Comparing Eq. (27) with Eq. (7),       
 is 

regarded as the actuator fault and the 
proposed   SMO   can   estimate   it   in  faulty  
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conditions. The method of computing 
              as the observer input is 
relatively simple. Passing the pitch reference 
angle through the pitch actuator transfer 
function of (2), the pitch angle in healthy 
conditions is obtained. Considering the pitch 
angle, wind speed, and rotor speed, the 
healthy torque can be determined from the 
aerodynamic model of (1). 

To establish a criterion in order to detect the 
fault occurrence, some fault indicators are 
defined as: 

   ( )  ∫ |   ( )|  
 

    

       
( ) 

 ∫ | ̂     
( )|  

 

    

   

 
 
 
 

(28) 

where |.| stands the absolute value.    is 
selected to be 0.5s and a threshold value of 
0.03 is considered. In fault-free conditions, 
the fault indicators never exceed the 
appropriately considered threshold. Whenever 
the threshold is exceeded by at least one of the 
fault indicators, the FDI module gives an 
alarm and the fault is detected. By 
investigating the values of fault indicators in 
fault-free conditions and extensive fault 
scenarios (including the faults shown in Table 
4), it was found that the value of 0.03 is 
appropriate and leads to correct and  fast  fault  

 detection. A threshold less than 0.03 may lead 
to false alarm and more than 0.03 deteriorates 
the fast fault detection and the fault is 
detected with more delay than now. 

The isolation strategy is based on the use of 
the aerodynamic torque fault estimated by the 
SMO. In detail, when a fault occurs in one of 
the pitch actuators, the aerodynamic torque 
fault,       

 in Eq.(27), deviates significantly 
from zero. Then, the following fault isolation 
strategy is established: 
 If       

 does not exceed the threshold 
and     exceeds the threshold while     
does not exceed, then the i-th sensor is 
faulty. 

 If       
 exceeds the threshold and     

exceeds the threshold while     does not 
exceed, then the i-th actuator is faulty. 

where       {     }      . Following 
the isolation strategy, the fault is properly 
isolated and     approximately represents the 
sensor/actuator fault magnitude. The fault 
diagnosis scheme implemented in this paper is 
illustrated in Fig.9. 
 

5.2 Fault scenarios and simulation results 
 
In order to evaluate the FDI module, four 
representative fault cases are considered in the 
pitch subsystems in Table 4. The results are 
presented in the following. 

 

Fig. 9. The fault diagnosis scheme 
 

Table 4. List of the considered faults in the pitch subsystem 

Fault case Description 

Fault case 2–1 Dynamics change (abrupt pressure drop) of pitch actuator 3 –from 
10th to 20th sec. 

Fault case 2–2 Intermittent rectangular faults on pitch actuator 1–from 25th to 
40th sec. 

Fault case 2–3 Gain factor on pitch sensor 1, equal to 1.2–from 45th to 50th sec. 

Fault case 2–4 Intermittent bias on pitch sensor 2–from 52th to 63th sec 
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Fault case 2–1 considers a fast change in 
the dynamics of actuator 3 implemented 
within 10th–20th seconds. This change makes 
the pitch angle differ from its true value and 
causes a fault on the pitch angle. During this 
fault, some of fault indicators exceed the 
threshold. The fault indicators    ,    , and 
      

 are illustrated in Fig.10. The fault is 
immediately detected at the 10th second, since 
      

 exceeds the threshold. Following the 
isolation strategy,     and       

 exceed the 
threshold, while     does not; hence, there is 
a fault in pitch actuator 3. 

Fault case 2–2 realizes an intermittent 
rectangular fault in pitch actuator 1 within the 
25th–40th seconds. The fault indicators    , 
   , and       

 are illustrated in Fig.11. The 
fault is immediately detected at 25th sec as 
      

 exceeds the threshold.     and       
 

exceed the threshold, while     does not do 
so, and, hence, it is clear that a fault has 
occurred in pitch actuator 1. The 
reconstructed fault, reflected in    , is very 
close to the simulated one, and both are 
shown in Fig.12. 

In fault case 2–3, a gain factor of 1.2 is 
applied to the pitch sensor 1 measurements 
within the 45th–50th seconds. Exceeding the 

In fault  case  2–3,  again  factor  of  1.2   is  

 applied to the pitch sensor 1 measurements 
within the 45th–50th seconds. Exceeding the 
threshold by     at 45.22 second, the fault is 
detected. Exceeding the threshold only by     
means the pitch sensor 1 experiences a fault 
(see Fig.13). 

An intermittent bias fault is simulated in the 
pitch sensor 2 measurements as fault case 2–4 
within the 52th-63th seconds. The fault is 
detected at 52.03 second. The simulated and 
estimated faults are depicted in Fig.14 also. 

In all simulated scenarios, the proposed 
fault diagnosis scheme immediately detects 
and isolates the faults, and then, provides 
sufficiently good reconstruction of fault 
signals.  

 
6.Conclusion 

 
This paper describes the development of a 
fault diagnosis scheme that exploits a sliding 
mode observer with a modified switching 
term and residual generation method in order 
to estimate some sensor and actuator faults in 
a well-known wind turbine benchmark model. 
Five fault scenarios are considered in the rotor 
speed, generator speed, and generator torque 
sensors, and four fault scenarios are simulated 
in the pitch subsystems sensors, and actuators. 
The simulation results show that the proposed 
diagnosis    scheme    provides    an   accurate 

  

 

Fig.10. Fault indicators during the occurrence of fault case 2–1 
 

 

Fig.11. Fault indicators during the occurrence of fault case 2–2 
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Fig.12. Simulated and estimated faults on the pitch actuator 1 

 
 

 

Fig.13. Fault indicators during the occurrence of fault case 2–3 
 

 
Fig.14. Intermittent rectangular faults in the pitch sensor 2 
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detection, isolation, and reconstruction of 
fault signals in the presence of measurement 
noise. Investigation of the robust SMO-based 
FDD schemes to handle the faults in a more 
realistic benchmark model incorporated with 
FAST is suggested as a good direction for 
further research, and it is intended in the 
author’s future work. 
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