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Abstract 

We study certain function algebras and their operator algebra completions on r-discrete 

abelian groupoids, the corresponding conditional expectations, maximal abelian 

subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition 

for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal 

(for a special case). We use this decomposition to study the norm-one eigenvectors of 

corresponding full C*-algebra instead of the multiplicative functionals (spectrum) which 

have norm-one in the abelian group case. 
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Introduction 

For a locally compact Hausdorff topological group 

G , the function algebra ( )cC G  consisting of all 

continuous functions of compact support on G  encodes 

all the information on the topology of G . For instance 

G  is compact iff ( )cC G  is unital. On the other hand it 

gives no information on the algebraic structure of G , 

since its algebraic operations are defined pointwise. 

Indeed, for such groups 1G  and 2G , the corresponding 

function algebras 1( )cC G  and 2( )cC G  are 

isomorphic (as normed algebras) iff 1G  is 

homeomorphic to 2G  as a topological space. To 

overcome this shortcoming, people usually endow 

( )cC G  with the convolution product 

 
1( ) ( ) ( ) ,

G
f g x f y g y x dy    

where the integral is taken against a left Haar 

measure (an essentially unique, left translation invariant, 

regular Borel measure) on G .With this product, ( )cC G  

is again a normed algebra, but this time in the above 

situation, the function algebras 
1( )cC G  and 

2( )cC G  are 

isomorphic iff 1G  is homeomorphic and algebraically 

isomorphic to 
2G  as a topological group.  

It now remains to complete the convolution algebra 

( )cC G  to a Banach or complete operator algebra. One 

completion of the first kind is to the Banach algebra 
1( )L G  of absolutely integrable functions on G  (with 

respect to the left Haar measure).  

This is a descent algebra whose representation theory 

fully reflects that of G , namely, its non-degenerate 

representations are in one-one correspondence with 

unitary representations of G [5]. The only major 

shortcoming of this function algebra is its spectral 

theory. Indeed, among Banach *-algebras, only C*-

algebras have a fairly good spectral theory. The good 

news is that one could complete 
1( )L G  into a universal 

(full) C*-algebra *( )C G  with the same representation 

theory. This is done using all non-degenerate 
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representations on Hilbert spaces and taking supremum 

of the corresponding operator norms. Alternatively, one 

could take the completion under the operator norm in 

the image of the left regular representation to get the 

reduced C*-algebra 
*( )rC G . The two constructions are 

the same exactly when G  is amenable [11]. 

The above mentioned full and reduced C*-algebra 

construction is generalized by Jean Renault [12] to 

locally compact (not necessarily Hausdorff) groupoids. 

The construction is shown to be very useful in the study 

of the representation theory of groupoids [1] and [2]. 

 In this paper we study C*-algebras on abelian 

groupoids and the corresponding extensions. We also 

study eigen-functionals on abelian groupoids which paly 

the role of characters in group C*-algebras. The 

structure of abelian groupoids is recently studied in 

[9,10]. Our basic reference for groupoids is [12]. 

 A groupoid   is a small category in which each 

morphism is invertible (for a formal definition, see 

[12]). The unit space 
(0)X    of   is the subset of 

elements 
1 
 where   ranges over  . The range and 

source maps 
(0), :s r   are defined by 

1 1( ) , ( )r s       , for   . For 
(0)u 

, we set 
1( )u r u   and 

1( )u s u  . The isotropy 

group of   at a unit u  is { : ( ) ( )}u

u r s      . 

 For subgroupoids H  and K  of  , 

/ K  (resp. \H ) is the set of right (resp. left) 

classes in   modulo K  (resp. H ), that is, 
( )

( ){ | } { |. } .( )s

rresp

    K H  

The quotient spaces / K  and \H  are fibered 

on 
(0) . Note that even for the case of a group bundle 

H , it is not necessary that each fibre ( )xH  is open. 

Indeed we have the following characterization for the 

case of wide subgroupoids (i.e., a subgroupoid whose 

unit space is the same as the unit space of the groupoid). 

 Proposition 1.1 Every wide subgroupoid H  with 

open fibers 
xH  in a groupoid   with locally compact 

topology is closed. 

 Proof: Since H  is equal to the disjoint union 

of the cosets of H  in  , except H  itself, and these 

cosets are open (because the fibers 
xH  are open and 

the multiplication is continuous), H  is open and so 

H  is closed. 

 A subgroupoid N  of   is called normal if there 

exist a groupoid G  and a surjective groupoid morphism 

: G  such that 
1 (0)( )  G N . 

 In this case, / N  and G  are isomorphic, as 

groupoids. As a typical example, ( )X  is a closed 

normal subgroupoid of locally compact groupoid  . It 

is also a locally compact group bundle [12, page 18]. 

When   is locally compact, the subgroupoid ( )X  is 

closed, but not necessarily open. Note that ( )int X  

is an open subgroupoid, but it has open bundle maps 

only if   has a continuous Haar system, in which case, 

( )int X  also has a continuous Haar system. 

 For the case of group bundles, a normal locally 

compact (resp. measured) subgroupoid N of a locally 

compact (resp. measured) groupoid   is a continuous 

(resp. measurable) field { ( ) ( )}x X x x  N  

of subgroups such that 
1( ) ( ),x y   N N  where 

: x y  . 

 It is shown in [9, Remark 1.1] that the quotient 

topology on / N  is induced by the continuous 

surjection : /  N . For a topological groupoid 

  with subgroupoid N  (with the induced topology) 

if   is second countable and locally compact and N  

is locally closed, then N  is locally compact. If N  is 

open in  , then its range and source maps are open. 

 The subgroupoids ( )X  and ( )R   are measured 

groupoids. Note that for a measured groupoid, the 

continuity of the Haar systems   and   holds only in 

particular cases (for example see [13,14] and [15]). In 

these cases, the above groupoids are locally compact 

groupoids. 

 

Results 

Definition 2.1 An abelian groupoid is a groupoid 

whose isotropy groups are abelian. 

 If   is r-discrete and X  is compact, 
*( )rC   is 

unital, and its unit is the characteristic function X [9, 

Theorem 3.1]. 

 We consider the trivial continuous  -bundle of C*-

algebras over X  with fibre ℂ and apply [1, 

Proposition 6.1.10]. 

 If   is an abelian groupoid with amenable 

associated principal groupoid ( )R  , then 

* *( ) ( )redC C   . 

 

 Lemma 2.2 If   is an r-discrete abelian groupoid 
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with finite unit space, then 
* *( ) ( ).redC C    

 Proof: An r-discrete abelian groupoid with finite 

unit space is decomposable abelian groupoid [10], and 

therefore amenable, and for amenable groupoid  , we 

have 
* *( ) ( )redC C   [1, Proposition 6.1.10]. 

  

Theorem 2.3 If   is an r-discrete abelian groupoid 

with finite unit space, then (
* *( ), ( ( ))C C X  ) is a 

C*-diagonal pair. 

 Proof: Since (𝑅 ∝𝑐 Γ(𝑋)̂)
(0)

= Γ(𝑋) ̂  and 

𝑅 ∝𝑐 Γ(𝑋)̂
 
is a principal r-discrete groupoid, 

  (C∗(𝑅 ∝𝑐 Γ(𝑋)̂, 𝔾), 𝐶0(Γ(𝑋)̂))
 
is a diagonal 

pair [8, Theorem 3.3.16], hence (
* *( ), ( ( ))C C X  ) is 

a C*-diagonal, because the isomorphism between 

groupoid C*-algebras preserves the diagonal. 

  

Corollary 2.4 If   is an r-discrete abelian groupoid 

with finite unit space, then the restriction map 
* *: ( ) ( ( ))P C C X   is the unique faithful 

conditional expectation onto 
*( ( ))C X . 

 In [7], the authors show that there is a generalized 

conditional expectation 
* *( ) ( ( ))C C x   , if we 

add these generalized conditional expectations, we get a 

generalized conditional expectation 
* *( ) ( ( ))C C X   . In [3, Theorem 3.4], the 

following corollary is proved for the r-discrete case. 

  

Corollary 2.5 If   is an r-discrete abelian groupoid 

with finite unit space, then 
*( ( ))C X (resp. 

* ( ( )))C X   is a masa in 
*( )C   (resp. 

* ( ))C   . 

 If   is a nontrivial r-discrete abelian groupoid with 

finite unit space, X  can not be the interior of ( )X , 

therefore 
*( )C X  is not a maximal subalgebra of 

*( )C  [12, Proposition II.4.7(ii)]. But 
*( ( ))C X  is 

commutative, and we can conclude that there is no 

( )cf C   in the center of the commutative C*-

algebra 
*( ( ))C X  with support outside of ( )X . 

The next result follows from [8, Corollary 3.3.19]. 

 

 Corollary 2.6 If   is an r-discrete abelian groupoid 

with finite unit space, 
*( ( ))C X  has the extension 

property in 
*( ).C   

  

Corollary 2.7 If   is an r-discrete abelian groupoid 

with finite unit space, 
*( )C   is regular as a 

*( ( ))C X -bimodule. 

 For a Banach 
*( ( ))C X -bimodule M , An 

element m M  is called an intertwiner if 
* *. ( ( )) ( ( )).m C X C X m   . 

 If m M  is an intertwiner such that for every 

( ( )),f C X  .f m ℂ
 

m , we call m  a 

minimal intertwiner. When the abelian algebra is a 

masa, intertwiners are the same as normalizers [4, 

Proposition 3.3], that is the set 
* * * *( ( ( ))) { ( ) : ( ( ))N C X v C vC X v      

*( ( ))C X   and 
* * *( ( )) ( ( ))}.v C X v C X    

 For 
*( ( ( )))v N C X  , put 

*( ) : { : ( ) 0}dom v v v   Z , 

this is an open set in Z =  𝐶∗(Γ(𝑋))̂
. As observed 

by Kumjian, there is a homeomorphism 
*: ( ) ( ) : ( )v dom v dom v ran v    

given by 

*

*

( * * )
( )( ) ,

( * )
v

v f v
f

v v


 


  such that 

*

1

v v
   .Regularity of a bimodule M  is equivalent 

to norm-density of the set of 
*( ( ))C X -intertwiners. 

Intertwiners and normalizers are closely related, at least 

when 
*( ( ))C X  is a masa in the unital C*-algebra 

*( )C   containing M  [4, Remark 4.2]: 

( )i  If 
*( )v C   is an intertwiner for 

*( ( ))C X , then * * * *, ( ( )) ( )v v vv C X C   . 

 If 
*( ( ))C X  is maximal abelian in 

*( )C  , then 

v  is a normalizer of 
*( ( ))C X  [4, Proposition 3.3]. 

 ( )ii  For 
*( ( ( )))v N C X  , if *v

  extends to 

a homeomorphism of 
*( )dom v  onto ( )dom v , then 

v  is an intertwiner. Moreover, if I is the set of 

intertwiners, then 
*( ( ( )))N C X  is contained in the 

norm-closure of I , and when 
*( ( ))C X  is a masa in 

*( )C  , 
*( ( ( )))N C X I   [4, Proposition 3.4]. 

  

Definition 2.8 A minimal intertwiner of 
*M  will be 
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called an eigen-functional. For clarity, we use 
*( ( ))C X -eigen-functional. That is,a 

*( ( ))C X -

eigen-functional is a nonzero linear functional 

: M ℂ  such that, for all 
*( ( ))f C X  , 

( * )g f g , ( * )g g f  

 are multiples of  . We equip the set of all 

*( ( ))C X -eigen-functionals * ( ( ))
( )

C X
E M  

with the relative weak* topology 
*( , ) M M . 

 We know that  𝐶∗(Γ(𝑋)) ⊂̂ 1( )E M . If G   

is an abelian group, we have * * *( ( )) ( ) ( )C X C C G    , 

hence 
1

( ( ))
( ( ))

C X
C




 E 𝐶∗(𝐺)̂

 
hence eigen-

functionals are generalizations of multiplicative 

functionals. 

 Given an eigen-functional * ( ( ))
( )

C X



E M , the 

associativity of the maps 
*( ( )) .f C X f    and 

*( ( )) .f C X f   yields the existence of 

unique multiplicative linear functionals ( )s   and 

( )r   on 
*( ( ))C X  satisfying ( )( ) .s f f    

and ( )( ) .r f f   , that is, 

( * ) ( )[ ( )( )],g f g s f    

( * ) [ ( )( )] ( ).f g r f g    

 We call ( )s   and ( )r   the source and range of  , 

respectively. 

 There is a natural action of the nonzero complex 

numbers z  on ( )E M , sending ( , )z   to the 

functional ( )m z m ; clearly ( ) ( )s z s   and 

( ) ( )r z r  . Also, ( ) {0}E M  is closed in the 

weak*-topology. Furthermore, : ( )r E M

𝐶∗(Γ(X))̂
 and : ( )s E M 𝐶∗(Γ(X))̂

  are 

continuous. 

  

Notation 2.9 We put 𝔾 1( ( ))C  E , where 

1 *( ( ))C E  is the collection of norm-one eigenvectors 

for the dual action of 
*( ( ))C X  on the Banach space 

dual 
* *( )C  , also for a bimodule 

*( )C M , 

 𝔾 | M  is defined directly in terms of the bimodule 

structure of M , without explicit reference to 
*( )C   

as in [4, Remark 4.16]. 

 The groupoid 𝔾, with suitable operations and the 

relative weak*- topology, admits a natural 𝕋-action. If 

, ( )  E M  satisfy ( ) ( )r r   and 

( ) ( )s s  , then there exists z ℂ  such that 

0z   and z   [4, Corollary 4.10]. 

 With the relative weak*-topology, 
1( ) {0}E M  is 

compact [4, Proposition 4.17]. Thus,
1( )E M  is a 

locally compact Hausdorff space. 

 As usual, we may regard an element m M  as a 

function on 
1( )E M  via ˆ ( ) ( )m m  . When A  is 

both a norm-closed algebra and a 
*( ( ))C X -

bimodule, the coordinate system 
1( )E A  has the 

additional structure of a continuous partially defined 

product as described in [4, Remark 4.14]. In this case, 

we will sometimes refer to the coordinate system as a 

semitwist. 

  

Notation 2.10 Let ℛ  1( ) : : ( )  M E M . 

 Then ℛ ( )M  may be identified with the quotient 

1( ) \E M 𝕋 of 
1( )E M  by the natural action of 𝕋. A 

twist is a proper 𝕋-groupoid 𝔾 so that  𝔾\𝕋 is a 

principal r-discrete groupoid. The topology on 

ℛ ( ( ))C    is compatible with the groupoid 

operations, so  ℛ ( ( ))C    is a topological equivalence 

relation. 

 Consider the C*-diagonal 
* *( ( ), ( ( )))C C X  , 

and let 
*( )C M  be a norm closed 

*( ( ))C X -

bimodule. Then the span of 
1( )E M  is 

*( , ) M M -

dense in 
*M . Suppose A  is a norm closed algebra 

satisfying 
* *( ( )) ( )C X C   A . If B  is the 

*C -subalgebra of 
*( )C   generated by A , then B  is 

the C*-envelope of A . If in addition, 
*( )C B , 

then ℛ ( ( ))C    is the topological equivalence relation 

generated by ℛ ( )A  [4]. 

 Eigen-functionals can be viewed as normal linear 

functionals on 
* **( )C   and using the polar 

decomposition for such functionals one obtains a 

minimal partial isometry for each eigen-functional as 

follows. By the polar decomposition for linear 

functionals, there is a partial isometry 
* * **( )u C   
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and positive linear functionals 
* * *| |,| | ( )C     

so that 
* * *. | | | | .u u    . We find that 

( ) | |r    and 
*( ) | |s   . Moreover, 

*uu  and 

*u u  are the smallest projections in 
* **( )C   which 

satisfy, 
* *. ( ) ( ). ( )u u s s u u s   

 
and 

* *. ( ) ( ). ( )uu r r uu r    . For 
1 *( ( ))C E , we 

call the above partial isometry u , the partial isometry 

associated to   and denote it by v  . If    

𝐶∗(Γ(𝑋))̂
 
, then u  is a projection and is denoted by 

p . The above equations show that 
*

( )sv v p    and 

*

( )rv v p   . 

 Moreover, given 
1 *( ( ))C E , v  , may be 

characterized as the unique minimal partial isometry 
* **( )w C   such that ( ) 0w  . Recall that  

,  𝐶∗(Γ(𝑋))̂
 

satisfy ( , )  ℛ ( ( ))C    if and only if there is 

1 *( ( ))C E  with ( )r    and ( )s   . For 

brevity, we write ~   in this case [4]. For  

𝐶∗(Γ(𝑋))̂
, we use ( , )H    for the GNS 

representation of 
*( )C   associated to the unique 

extension of  . Let ,  𝐶∗(Γ(𝑋))̂
, then ~   

if and only if the GNS representations   and   are 

unitarily equivalent [4, Lemma 5.8]. Therefore if

,  𝐶∗(Γ(𝑥))̂
, then ~   iff   . If we set 

* *{ ( ) : ( ) 0}f C f f   M , 

 then 
*( ) /C  M  is complete relative to the norm 

induced by the inner product *, ( )f g g f    M M , 

and thus *( ) /H C   M  [7, Lemma 2.11] and [4, 

Lemma 5.8]. 

 The next result is from [4]. 

  

Proposition 2.11 Suppose  𝐶∗(Γ(𝑋))̂
 and 

1 *( ( ))C E  satisfy ~ ( )s  . Then there exist 

unique orthogonal unit vectors 1 2, H     such that 

for every 
*( )f C  , 1 2( ) ( ) ,f f      . 

 

 Theorem 2.12 We have 
 

ℛ = ℛ(𝐶∗(Γ)) ≅ 𝑅(Γ) ∝𝑐 𝐶∗(Γ(𝑋))̂

= 𝑅 ∝𝑐 Z
 

 algebraically and topologically. 

  

Proof: Ionescu and Williams showed that every 

representation of  induced from an irreducible 

representation of a stability group is irreducible [6]. We 

can extend a character    𝐶∗(Γ(𝑥))̂  to   

 𝐶∗(Γ)̂  such that 
*

[ ] [ ]| ( | ) 0y xC   , and since the 

extension is unique in C*-diagonals, this extension will 

be equal to ( , ( )xInd x X  , ) . Let  ,   Γ(𝑋)̂, 

then by [4, Lemma 2.11] ~   if and only if the GNS 

representations   and   are unitarily equivalent. By 

[7, Lemma 2.5], ( , ( ) , )xInd x X   is unitarily 

equivalent to ( . ,Ind x k  
( )( ) , . )s kX k  in  𝐶∗(Γ)̂       

so they are in the same class in  𝐶∗(Γ)̂ , that is 

~ .k   where k R . But if two stability groups of 

  are not in the same orbit, none of their irreducible 

representations can be equivalent. Therefore the two 

space are the same. Finally, since the topology is r-

discrete, they are equal topologically. 

 

 Corollary 2.13 The groupoid 𝔾 is the 𝕋-groupoid 

of   𝑅 ∝𝑐 Z , that is we have the exact sequence  Z

→ Z × 𝕋 → 𝔾 → 𝔾\𝕋 ≅ 𝑅 ∝𝑐 Z . 

 An r-discrete abelian groupoid with finite unit space 

and open fibers ( )x  has AF principal groupoid [10]. 

  

Definition 2.14 Let P  be an open subset of  ℛ  

containing  Γ(𝑋)̂. Then P  is called a partial order in  

ℛ if P P P   and P P  1
 Γ(𝑋)̂. If moreover, 

P P  1 ℛ  then P  is called a total order in ℛ. If 

P P P   and 
1P P  , then P  is an equivalence 

relation on a subgroupoid of ℛ. If P  is a total order on 

ℛ then P  is closed. 

 If A  is a strongly maximal triangular subalgebra of 

a unital AF C*-algebra 
*( )C  , then 

* *( ( ))C X  A A  is a canonical masa in 

*( )C  and 
*A A  is dense in 

*( )C  . 

 We now coordinatize the triple of algebras 
* *( ( ( )), , ( ))C X C A , where 

*( )C   is an AF 



Vol. 28  No. 2  Spring 2017 H. Myrnouri. J. Sci. I. R. Iran 

174 

C*-algebra and A  is a strongly maximal triangular 

subalgebra of 
*( )C   whose diagonal is 

*( ( ))C X . 

We define the spectral triple ( , ,PZ ℛ )  for 

* *( ( ( )), , ( ))C X C A . 

  

Theorem 2.15 For each partial order P  in ℛ, 
*( ) { ( ) | }P f C suppf P   A  

 is a norm closed subalgebra of 
*( )C   containing 

*( ( ))C X . Conversely, each subalgebra A  of 

*( )C   containing 
*( ( ))C X  is of the form ( )PA

, for a unique partial order. The correspondence 

( )P PA  is an inclusion preserving bijection 

between the collection of partial orders in ℛ and norm 

closed subalgebras of 
*( )C   containing 

*( ( ))C X . 

 

Conclusion 

In this paper, we studied C*-algebras of r-discrete 

abelian groupoids. When the unit space is finite, we 

showed that the full and reduced C*-algebras are the 

same. In this case, there is a conditional expectation 

onto the C*-algebra of the principal groupoid. We also 

studied maximal abelian subalgebras (masa) and eigen-

functionals for such groupoids. 
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