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Abstract 

Natural vibration analysis of plates represents an important issue in engineering applications. In this paper, a new and 
simplify method for vibration analysis of circular and rectangular plates is presented. The design of an effective robust 
controller, which consistently attenuates transverse vibration of the plate caused by an external disturbance force, is 
given. The dynamics of the plate is modeled as a distributed parameter system. We have studied the control vibration 
of the plate using quantitative feedback theory method by determining the transfer functions between various factors 
of control system. In this method we have developed the general distributed parameter system method for uncertainty 
problem for simply supported rectangular plate and clamped circular plate. The quantitative feedback method is one 
of the robust control methods which is capable to solve problems despite structural and non-structural uncertainty. 
Quantitative Feedback Theory introduces the new technique to design one-point feedback controllers for distributed 
parameter systems. The results demonstrate that the control law provided a significant reduction in the plate vibration. 
The numerical simulation of the designed controller demonstrates that the QFT controller can consistently attenuate 
the vibration compared to a passive system. 
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1.   Introduction 

Plates are widely used as a major structural element in 
many fields such as mechanical, aerospace and civil 
engineering. As a result of many loadings are 
dynamical on plates, in many cases active control by 
the use of piezoelectric layers and piezoelectric 
patches have been used to reduce the vibration of 
plates. Active vibration control of stiffened structures 
is an important problem in various practical situations. 
In aircraft structures, the wings and fuselage consist of 
a skin with an array of stiffeningribs. Such structures 
are subjected to dynamic loads and their control is of 
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paramount importance in safe and smooth functioning 
of the system. Bailey and Hubbard [1] proposed the use 
of distributed piezoelectric transducers (PZT) in active 
vibration control of beams. Anderson and Hagood [2] 
discussed issues related to simultaneous sensing and 
actuation in structural control. Tzou [3] gave 
exhaustive information on vibration control of beams, 
plates and shells using piezoelectric materials. 
Gaudenzi et al. [4] demonstrated the aspects of 
vibration control of beams with collocated PZT piezo 
patches using velocity and position feedback systems. 
Lam and Ng [5] presented theoretical formulation for 
laminated plates using classical plate theory and 
Navier solutions. A negative force-cum-moment 
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feedback algorithm is used in controlling the dynamic 
response of the plates. Chandrashekhara and Agarwal 
[6] presented a finite element approach to active 
vibration control of laminated composite plates using 
piezoelectric devices. Investigations on vibration 
control of plates have been carried out and their 
reference is available in the literature [5, 7]. One of the 
important and complicated issues in the field of control 
is the analysis of uncertainty systems and designing a 
resistant controller for them. As many real systems 
have real structures and some uncertainties, control 
engineers show a lot of desire in designing and 
analyzing these systems. The method has expanded by 
Doyle [8] and the quantitative feedback theory method 
founded by Horowits [9-12] is among the methods 
used for solving such problems and designing 
controllers for them in the field of frequency. In this 
method, sensitivity transfer function matrix norms are 
utilized, and phase information diminishes while 
designing as closed loop system is used in this analysis 
[9] . But this method is one of the methods that 
provides designer with enough information about 
system phase despite structural and non-structural 
uncertainties. Concerning the design of controller with 
Quantitative Feedback Theory method (QFT) for 
linear multivariable systems, we can refer to works of 
Chain et al [14] and Cheng et al [15-16] in addition to 
Horowits [10-13] which have proposed a new formula 
for linear and uncertain multivariable procedures. 
Franchek has also used Gaussian elimination method 
to break a multivariable system to a single-variable 
system [17]. Rafeeyan has also proposed a new method 
for eliminating input and output disturbance. In their 
method, the multivariable procedure is first analyzed 
into a single-variable procedure. Preferable controllers 
are then designed using quantitative feedback theory 
method. Many works have also been pursued in control 
vibrations of plate. Using time delay method, Lang 
Xiang Chen controlled the vibrations of the flexible 
plate whose one end was harnessed [18]. In this 
controller, the influence of the time delay in the 
Mathematical dynamic system during designing has 
been taken into the account, and there is no estimation 
or hypothesis in derivative controller and the 
sustainability of the system is easily guaranteed. Chain 
and Chang controlled a square shaped plate using 
optical sensors and acoustic radiation. This method 
include the dynamic analysis of Uniform plates, 
considering the light path errors, nervous networks of 
control systems and experimental observations on 
acoustic radiations and the reduction of emission level 
from the plates using optical method [19]. In 2009, 
Kacar [20] used intelligent piezoelectric patches to 
control vibrations of multilayered plate and calculated 
the influence of the size of the patches installed on the 
plate for various border conditions on different layers 

of the layered plate. In 2003, Giovanni Caruso used 
some piezoelectric patches as sensors and stimulators 
to control the vibrations of the plate [21]. In 2004, 
TianXiong Liu by using the H method and intelligent 
patches with viscoelastic damping properties have 
been studied the control vibrations of plate [22]. In 
2010, Kuzopa [23] conducted the active control 
vibrations of aluminum rectangular plate using 
piezoelectric patches and analyzed the influence of 
various parameters on the vibrations of the plate. 
Utilizing the quantitative feedback theory method and 
forming a model of transformation function with 
structural and nonstructural uncertainties on the plate, 
this research seeks to study the issue of recoiling the 
vibrations caused by external forces on the plate 
model, and it has the amplitude of variations of the 
plate has decreased by designing the appropriate 
controller.  

2.   Analysis of governing equations of motion 

In this section, the Dynamic equations of plate with 
considering internal damping will be obtained. For 
this purpose, Potential energy of a rectangular plate 
with dimensionsa b  and thickness h , due to the 
elastic deformation is expressed as follows [24-25]: 
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/2

21
2

h xx xx xy xy

h yy yyR
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Where the stress-strain relations of plate can be 
obtained the following equation. With consider the 
classical theory of plate the stress such as  

0zz zx zy  and the strains in z direction 
will be zero. 
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Where 
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EG  is the Shear modulus and 

is the internal damping coefficient. The potential and 
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Kinetic energy due to applied the force (q )are 
expressed respectively as follows 

)4( ( , ) ( , ) ,
R

V q x y w x y dxdy
 

And  
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Where ( , )w x y  is the displacement in the z
direction. By substituting Eq. (2) into the Eq. (1), and 
simplifying, potential energy equation can be written 
in the new following form: 
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According to the Hamilton’s principal for achieve 
the governing equation of plate by using the calculus 
of variations and its extreme application, the following 
equation will be obtained [26-27].
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Using the integration of relation terms (7), the 
differential equation of a rectangular plate can be 
expressed in the following form  
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3.   Vibration Control of Rectangular Plate 
In this section vibration control of rectangular plate 

due to apply disturbance external force on the plate 
will be studied by using the quantitative feedback 

theory method (QFT). The external disturbance force 
will be modeled by means of an impulse point load 
which is applied at the location ( , )d dx y  
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In which  is Dirac's delta function. Using the 
Fourier series expansion and integration of Eq. (10), 
the force disturbance will be written as follow 
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The governing boundary conditions for simply 

supported plate are considered by following 
relationships  
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By using the levy’s solution [24-27] and assuming 
the deflection of plate with the series of Eq. (13) and 
substituting the Eq. (11) and Eq. (13) in to Eq. (9) the 
governing equation of rectangular plate can be 
obtained as  
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Equation (14) can be rewritten as the following 
form  
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Applying Laplace operator to Eq. (15) leads to 
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Consequently, the transverse displacement of the 
plate can be achieved as follows 
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In Eq. (17), n is a finite value for model accuracy 
representing the unstructured uncertainty of the 
system. In this section, robust control QFT [9-12] will 
be used for active vibration control of the plate. The 
main objectives in this section are to design a 
controller in a way that it could stabilize the system 
and reduce the vibration’s domain.  

2.1 A quantitative robust control approach for 
distributed parameter systems  

QFT based robust control is one of well-known 
effective frequencial techniques for controlling 
different types of practical processes [9-12]. As the 
most important properties of QFT, the procedure of 
controller design is transparent and systematic, and it 
is relatively easy to include uncertain factors in the 
performance’s specifications. Thus, the quantitative 
formulation of plant uncertainty and different 
performance specifications are essential for the 
feedback control.  The basic developments with QFT 
theory are focused on the control design problem for 
uncertain Linear Time Invariant (LTI) systems. 
Consider the system of the Fig (1) as the basic 
structure. Suppose a linear multi inputs-single output 
DPS with partial differential equation (PDE) with 
constant coefficient and time variable 0t  have 
been defined. In which 12 XXP  is transfer function 

between input 1x  and output 2x that obtained with Eq. 
(17). DPS and feedback loop which have been depicted 
in Fig (1) explain general distribution which includes 
sensor, actuator, disturbances and control factor in 
different points sado xxxx ,,,  respectively [30-32]. 

 

Fig 1. Two degrees of freedom QFT structure. 
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Fig 2. Control system and DPS 

It should be noted that, for situation which

ad xx , so xx that shows in Fig (2) the transfer 
functions between inputs and outputs will be written 
such as xsxdxoxdxoxsxsxa PPPP . By 
considering Fig (2) the dynamic equations of DPS are 
explained with Eq (18) 

)18( 

xaxoxaxdxoxdxo UPUPY 

xaxsxaxdxsxdxs UPUPY 
)( xsxa YNHWFRGU 

xsHYHNFRE 

In which capital letters describe Laplace transfers 
and RWNUU xdxa ,,,,  which show the inputs are 
reference signal, reference disturbances, noise sensor, 
external disturbances and actuator signals respectively 
[30-32]. In which the transfer functions depend on 
compensator (G), pre-filter (F), dynamic sensor (H), 
distance distributions, distance between sensor and 
actuator, disturbances and control factor among the 
transfer functions. In this section using the quantitative 
feedback control method and choosing proper transfer 
functions between input and output of system. With 
choosing the position of sensor and actuator on the 
peak of vibration mode such as Fig (3) the disturbance 
rejection problem in a simply supported rectangular 
has been considered. In this problem length of plate 

5a b m  and the location of each factor of control 
includes sensor, disturbance, actuator and object which 
has been considered as ( , )i jx y . 

 

Fig 3. Mode shape of simply supported rectangular plate 

Sensor and actuator position  
It should be noted that ( , )i jx y  in each location of 

the plate can be located and they will not create 
limitation. Considered places to obtain different 
transfer functions among control factors have been 
considered as follow 
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The system performance specifications are defined 
with the following expressions: 

(a) Stability. It is defined by the most restrictive 
condition of the following expressions: 

)19( 1.1
1 xsxa

xoxa

GP
GP 

)20( 1.1
1 xsxa

xsxa

GP
GP 
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changing above equations as sw
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 and 

using quantitative   feedback method [28-34]. Fig (4) 
shows bode diagram of Eq. (17) for transfer function 
between sensor and actuator which has acceptable 
approximation for different frequencies.  
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Fig 4. Bode diagram of plate models 

For other transfer functions, similar diagrams will 
be obtained. The templates are calculated from the 
equivalent transfer functions 

, , ,P P P Pxoxd xsxa xsxd xoxa and the robust stability and 
disturbance rejection bounds are obtained from the 
quadratic inequalities corresponding to Eq. (19), (20) 
and (21). The nominal open-loop expression is 
L GPxsxaGPxsxaPP . The G compensator (see Eq. (22)) is 
obtained by using a standard loop shaping QFT 
technique. 

 
Fig 5. Stability bounds of plate models 

According to Fig (6) Transfer function related to 
controller can be explained as follows: 

)22( 
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ss s
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Fig 6. Loop shaping for open-loop controller system 

Fig (7) shows the bode diagram for  designed 
controller in Eq. (22) 

 

Fig 7. Bode diagram for controller of plate models 

System’s simulation shows that after disturbance 
rejection the vibrations domain of rectangular plate are 
reduced. The designed controller is well controlled the 
amplitude of transverse vibrations. In Fig (8a) 
vibration of plate with out using any controller has 
been shown. Fig (8b) shows the disturbance rejection 
of rectangular plate.  

 

Fig 8a. Vibration of plate with out using any controller 
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Fig 8b. Disturbance rejection of rectangular plate. 

In addition, the proposed methodology in this 
paper is simpler, deals with the model uncertainty 
(structure, parameters and distribution) and is able to 
work with distributed specifications. 

3 Active Control Vibration of Circular Plate 
using QFT 

In this section control vibration of clamped circular 
plate has been studied such as the proposed method 
for controlling a rectangular plate [36].  The 
governing equation of circular plate can be written as 
follow: 

(23) 
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D w
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Where is Kelvin vogt damping coefficient [35-
37]. The external force disturbance ( , , )q r t will be 
modeled by means of an impulse point load which is 
applied at the location ( , )i ir  

0 0

0
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 (24) 

Using the Fourier series expansion and integration 
of Eq. (24) the disturbance force can be described as 
follow 
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Boundary conditions for clamped circular plate are 
considered by following relationships [24, 26, and 27] 

 )26( 0 ,
r a

WW
r 

By using the levy’s solution [24] and assuming the 
deflection of plate with the series of Eq. (27) and 
substituting the Eq. (25) and Eq. (27) in to Eq. (23) the 
governing equation of circular plate can be obtained as 
Eq. (30). 
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be obtained  
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 is the natural frequency of 

circular plate that will be obtained by solving the 
following characteristic equation [28-29, 41]. 
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And the governing equation of motion for circular 
plate rewrittin as follows
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After simplifying the Eq. (30): 
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Assuming zero initial conditions and Applying 
Laplace operator to Eq. (31) leads to 
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Consequently, the transverse displacement of the 
circular plate can be achieved as follows 
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In Eq. (34), n is a finite value for model accuracy 
representing the unstructured uncertainty of the 
system. In this section, robust control QFT will be used 
for active vibration control of the plate. The main 
objectives in this section are to design a controller in a 
way that it could stabilize the system and reduce the 
vibration’s domain. It should be noted that ( , )i ir  in 
each location of the plate can be located and they will 
not create limitation. Considered places to obtain 
different transfer functions among control factors have 
been considered as follow 
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The system performance specifications are defined 
with equations (19-21). Templates are calculated from 

xoxaxsxdxsxaxoxd PPPP ,,, (transfer functions). Stability 
and disturbance rejection bounds are obtained by 

changing above equations as sw
DGC
BGA

 and 

using quantitative feed back method. Fig (9) shows 
bode diagram for transfer function between sensor and 
actuator which has acceptable approximation for 
different frequencies and other transfer functions 
among factors which control unique conditions 
figures. 

 

Fig 9. Bode diagram of circular plate models 

For other transfer functions, similar diagrams will 
be obtained. According to Fig (11) and using the loop-
shaping technique the  transfer function related to 
controller can be explained as follows: 

 
Fig 10. Stability bounds of circular plate models 
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Fig11. Loop shaping for open-loop controller system 

Fig (12) shows the bode diagram for designed 
controller in Eq. (36) 

 

Fig12. Bode diagram for controller of circular plate models 

In this section the effectiveness of the designed 
controller will be demonstrated by means of numerical 
simulations. Three parameters will be considered in 
simulations, namely: the response of the controlled 
system to disturbances, the response of the system 
without controller to disturbances, and the control 
effort or control force signal. Since a proper controller 
must suppress arbitrary disturbances, two different 
disturbances are used to ensure that the QFT controller 
has consistent controlling performance. System’s 
simulation shows that due to this reason that, after 
disturbance rejection the reduction of vibrations 
domain of plate has been considered the designed 
controller reduces created vibration’s domain against 
entry impact considerably. In Fig (13a) the 
displacement of circular plate the disturbance force 

extends on it is shown. In Fig (13b) shows the Actuator 
effort of circular plate on ( , )a ar  point. The desired 
output X0 shows a more damped behavior and a 
smaller tracking error when using the proposed 
methodology and the compensator G. The method can 
also deal with uncertainty in the model and the spatial 
distribution of the inputs and the outputs. 

 

Fig13. a) Displacement of circular plate. b) Actuator 
effort.  

 

Fig.14 Simulation of result and disturbance rejection of 
circular plate. 

A QFT robust controller is successfully 
implemented for vibration attenuation in the circular 
plate for a partial differential equation dynamic. The 
simulation results indicate that the controller 
performance is independent of the disturbance load, 
which is the necessary condition for any control 
system that can successfully suppress arbitrary 
external disturbances.  
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In this paper, the control vibrations of rectangular and 
circular plate have been studied using by the 
quantitative feedback theory method. The objective of 
this paper is to present quantitative design techniques 
for synthesizing a controller for two degrees of 
freedom plant in order to achieve desired closed loop 
specifications. Using the distributed parameter system 
method, the control issue has been analyzed and also 
reduced the amplitude vibration of the studied plate by 
designing the appropriate control. The method utilized 
based on the considered situations is stated for various 
factors of the control system, and it is capable of 
solving problems for different modes. There are no 
limitations for choosing spots on the plate in utilizing 
this method. As we can see in the outputs of the 
systems, the designed controller has been able the 
amplitude level of the plate’s vibrations within the 
permitted range and increased the system’s response. 
There is no need for very complex methodologies to 
design controllers for DPS. On the contrary, by using 
the approach presented in this paper, classical QFT 
methods based on the new bounds definition can be 
used to solve the problem. The paper considered a 
spatial distribution of the location where the actuator 
and the disturbances are applied and where the sensor 
and the control objectives are placed. From this 
topology new TFs, stability and performance 
specifications and quadratic inequalities for DPS were 
introduced. 
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