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Abstract

In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior 
of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic 
membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. 
Squeeze film damping is modeled using nonlinear Reynolds equation. Both equation of motion and nonlinear Reynolds 
equation are first nondimensionalized, and then discretized and solved by means of finite element method. Static pull-
in analysis is performed and validated by previous researches, and then dynamic pull-in values are investigated and 
compared with static pull-in parameters. In the next step, the effect of squeeze film damping, ambient pressure and 
Casimir force on the system dynamics is studied. Results show significant effect of Casimir force and squeeze film 
damping on the system behavior which is considerable for fabrication and design.
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1. Introduction

Electrostatically actuated microelectromechanical 
systems are widely used these days in many
applications such as microswitches, micromirrors, 
micro resonators, micro valves, sensors and etc. due to 
high reliability, low energy consumption, good 
durability and their small size. The most important 
phenomena happens under the effect of electrostatic 
actuation is pull-in instability, which has been 
introduced by Nathanson et al. [1] and Taylor [2]. Most 
of the electrostatically actuated systems are made up of 
a conductive deformable electrode suspended over a 
rigid substrate as shown in Fig 1. An applied electric 
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voltage between two electrodes results in the 
deflection of the deformable electrode. Therefore, 
system capacitance is changed and measuring this 
change is the basis of electrostatic sensors performance 
like accelerometers. When the electrostatic force 
exceeds the elastic restoring force of the structure, 
pull-in instability occurs and two electrodes snap 
together and subsequently the device collapses. 
Therefore, the applied voltage has an upper limit which 
is called pull-in voltage. Calculating pull-in voltages is 
extremely important in design and fabrication process 
of MEMS. In most of previous researches pull-in 
instability has been studied statically. Batra et al have 
studied static pull-in instability of electrostatically-
actuated microelectromechanical systems considering 
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the effect of Casimir force [3]. Moeenfard et al have 
investigated the effect of Casimir force on the static 
behavior and pull-in characteristics of nano/micro-
mirrors under capillary forces [4]. Dequesnes et al 
have studied the static pull-in characteristics of several 
nanotube electromechanical switches [5]. Tilimans et 
al have investigated the static pull-in parameters of 
electrostatically driven vacuum-encapsulated
polysilicon resonators [6]. Sadeghian has investigated 
the surface effects, specifically residual surface stress 
and surface elasticity, on the electrostatic pull-in 
instability of micro and nano-scale cantilevers as well 
as double-clamped beams [7]. When the rate of voltage 
variation is insignificant, it is sufficient to study the 
pull-in instability statically [10]. When the rate of 
voltage variation is not negligible, the inertia effect 
must be considered and behavior of the system has to 
be studied dynamically [10]. In this situation the upper 
limit of voltage is called dynamic pull-in voltage [10]. 
Alsaleem et al have presented modeling, analysis and 
experimental investigation for the dynamic pull-in 
instability in resonators [8]. Krylov and Maimon have 
studied pull-in dynamics of an elastic beam actuated 
by continuously distributed electrostatic force [9]. 
Moghimi Zand and Ahmadian have investigated the 
effect of intermolecular forces on the dynamic pull-in 
instability of electrostatically actuated beams [10]. 
Moghimi Zand and Ahmadian have also studied 
dynamic pull-in instability of microsystems using 
homotopy analysis [11]. Studying dynamic behavior 
and vibrations of microsystems is important in design 
process, because many microsystems work on the 
basis of vibrations. Therefore, several researches has 
been analyzed the dynamic behavior and vibrations of 
MEMS and NEMS. Daneshpajooh and Moghimi Zand 
have studied oscillatory behavior of initially curved 
micro/nano systems under electrostatic actuation [12]. 
Moghimi Zand et al have also investigated nonlinear 
vibrations of microbeams under suddenly applied 
voltages [13]. Nayfeh and Younis have presented an 
analysis and simulation for the dynamics of electrically 
actuated microbeams [14]. Moghimi Zand and 
Ahmadian have studied the vibrational behavior of 
electrostatically actuated microstructures [15].

When the system dimension decreases from macro 
to micro, the effect of damping becomes significant 
and should be considered in modeling and design 
process. The most important type of energy losses in 
microsystems is fluid losses and the effect of squeeze 
film damping. Fluid effects are generally divided into 
shear (Couette) damping, where the fluid velocity is 
parallel to the electrode and squeeze film, where the 
velocity is normal to the electrode [16]. Several 
authors have studied the effect of squeeze film 
damping on the dynamic behavior of MEMS and 
NEMS [17-20]. Some numerical and analytical models 

have been used to model fluid losses in microsystems. 
A common way to model the squeeze film damping is 
to use Reynolds equation which is valid when (a) the
gap height is much smaller than the length of 
electrodes; (b) the motion is sufficiently slow and the 
unsteadiness can be neglected; (c) the gas is ideal; (d) 
the system is isothermal [21]. Tajalli et al have used 
Reynolds equation to model the squeeze film damping 
in order to investigate dynamic behavior of a coupled 
domain microstructure [22]. Bao et al have modeled 
the squeeze film damping effect using a modified 
Reynolds equation [23]. With the assumption of small 
pressure variation and small displacement, squeeze 
film damping can be modeled using linear Poisson 
equation, a simplified Navier-Stokes equation instead 
of nonlinear Reynolds equation [24]. Starr has 
modeled squeeze film damping in accelerometers 
using Poisson equation [25]. Another way to model 
squeeze film damping is to apply molecular dynamics 
approach [26]. Hutcherson and Ye have also 
investigated the effect of squeeze film on the 
micromachined mechanical resonators by means of 
molecular dynamics simulations [27].

By the decrease in device dimensions from 
microscale to nanoscale, the effect of intermolecular 
forces such as Casimir and Van der Waals forces 
should be considered [3]. Casimir force is the 
attraction of two uncharged bodies. When the size of 
the system is sufficiently small, Casimir force can 
cause static pull-in and collapse of the system. So it is 
important to consider this force in design process. 
Moghimi Zand and Ahmadian have studied the 
influence of Casimir force on the dynamic pull-in 
instability of microbeams [10]. Alipour et al have 
investigated the effect of intermolecular forces on the 
behavior of nanotubes [28]. Koochi et al have studied 
the effect of the Casimir attraction on pull-in instability 
of beam-type NEMS theoretically [29]. Keivani et al 
have studied the pull-in instability of the cantilever 
paddle-type and double-sided sensors in the Casimir 
regime under the acceleration [30]. In some other 
researches, the influences of Casimir force on the 
nonlinear behavior of nanoscale electrostatic actuators 
have been studied [31-35].

In some recent researches, the effect of small scale 
and intermolecular forces on the behavior of systems 
have been studied [36, 37]. Kanani et al  have modeled 
the size dependent pull-in instability of cantilever 
nano-switch immersed in ionic liquid electrolytes 
using strain gradient theory [38].

In most previous researches, beam theories have 
been used to model the static and dynamic behavior of 
micro and nano electromechanical systems. In few 
papers, plate theories such as CPT and FSDT have 
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been used for this purpose. Saghir and Younis  have  
presented and compared different approaches to 
develop reduced-order models for the nonlinear von-
Karman rectangular microplates actuated by nonlinear 
electrostatic forces for the purpose of studying static 
and dynamic behavior of the plate under small and 
large actuation forces [39]. Batra et al have modeled 
microsystems by means of linear elastic membrane 
theory to study static pull-in instability [3]. Also Serry 
et al have studied Casimir effect in the static deflection 
and stiction of membrane strips in MEMS [40]. 
However, the dynamic pull-in instability in micro/nano 
systems has not been modeled using linear elastic 
membranes yet.

The main idea of the present research is to model 
micro and nanoelectromechanical systems using 
membrane theory. In this paper, the effect of Casimir 
force and squeeze film damping on the dynamic 
behavior of micro and nano devices and the influence 
of Casimir force on dynamic pull-in instability of 
systems is studied. For this purpose, linear elastic 
membrane theory is applied to model the deformable 
electrode. Three different geometries are considered: 
Strip, annular and disk electrodes. Nonlinear Reynolds 
equation is used to model squeeze film air damping. 
Finally, Finite element method is applied to solve the 
governing equations.

2. Problem formulation

In this research linear elastic membrane theory is 
applied to model the deformable electrode. 
Membranes could be considered a simplified plate 
which has negligible bending resistance and 
gravitational body forces are to be neglected. A 
primary indication of membrane dynamics is given by 
the ratio falling between 80 and 100. To be 
considered a true membrane, a structure must satisfy 
the following conditions a) The boundaries are free 
from transverse shear forces and moments and Loads 
applied to the boundaries must lie in planes tangent to 
the middle surface. b) The normal displacements and 
rotations at the edges are unconstrained i.e. these edges 
can displace freely in the direction of the normal to the 
middle surface. c) A membrane must have a smoothly 
varying, continuous surface. d) The components of the 
surface and edge loads must also be smooth and 
continuous functions of the coordinates [41].

In the present research three sample geometries 
have been considered: a rectangular strip with the 
length and the width 8 which is clamped on 
smaller edges and other edges are free, the circular disk 
which is clamped along its periphery and the annular 
circular disk which its outer radius is and inner radius 
is 10 and is clamped on both inner and outer 

perimeters. The schematic of microstructure is shown 
in Fig. 1.

The equation of motion based on linear elastic 
membrane theory in the presence of fluid is given by:

2 2 2

02 2 2

0e c

w w wh
t x y

f f P P
(1)

where is deflection of electrode along axis,  ( ) is the mass per unit of area of electrode, 
is the tensile stress in the membrane, is thickness, 
is total fluid pressure and is the ambient pressure. 
is the electrostatic force acting on electrode which can 
be simplified under the assumption of parallel plate 
and neglecting fringing field effect as [22]= 2( + ) (2)

where  ( ) is the vacuum permittivity, is 
applied voltage between two electrodes and is 
initial gap.

a

b

c
Fig 1. (a) strip (b) annular disk (c) strip Microstructures

In equation1 is the Casimir force which is given 
by Eq. 3 as [22]= 240( + ) (3)

where is the speed of light in vacuum and is Plank’s 
constant that is 6.62607004 × 10 . As 
mentioned nonlinear compressible Reynolds equation 
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is applied to model the effect of fluid losses and 
squeeze film air. The applied Reynolds equation is [22]

3 3

12 eff

P PH P H P
x x x x

P HH P
t t

(4)

where is the total fluid pressure and is the distance 
between to electrodes i.e. = + and  is the 
effective gas viscosity. Reynolds equation is valid 
under the assumption that gas can be treated as a 
continuum. The validity  of this assumption depends 
on Knudsen number defined as [19]= (5)

where is molecular mean free path of gas. The flow 
is continuum when < 0.01. Many MEMS devices 
operate under the condition that the flow is closer to 
noncontinuum regimes. In this situation effective 
viscosity coefficient should be used in Reynolds 
equation instead of viscosity. is calculated using 
Veijola equation as [42]= 1 + 9.638 . (6)

The pressure boundary conditions of Reynolds 
equation are expressed as = 0 along clamped edges 
and = on free edges. Bye utilizing following non-
dimension parameters
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Non-dimensional form of equation of motion and 
Reynolds equation can be expressed as

2 2 2

2 2 2

02 4

ˆ ˆ ˆ
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P Pw P w P
x x y y

P ww P
t t

(9)

3. Finite element modeling and computational 
algorithm

Finite element method is employed to discretize 
governing equations. Based on linear elastic 
membrane theory, variables and can be 
approximated using 4-node linear elements as

1

, , , , 4ˆ
n

i i
i

w x y t W t x y n (10)

1

, , , , 4ˆ
n

i i
i

P x y t P t x y n (11)

where and are nodal values of and and
are linear interpolation functions which in terms of 
element coordinates and are expressed as

= 14 (1 )(1 )(1 + )(1 )(1 + )(1 + )(1 )(1 + ) (12)

By substituting Eq. 10 and Eq. 11 in the weak form 
of motion and Reynolds equations, semi-discrete finite 
element model can be developed as

1
¨ 1

ne nne e eM W K W f (13)

where is the iteration number and [ ], [ ] and { } are the mass matrix, stiffness matrix and force 
vector respectively which are defined as= (14)

= , , + , , (15)

2 4

0

1 ˆ
ˆ

ˆ 1
ˆe

e e
j j jw wf Q dA

P P
(16)

where are nodal reactions. Semi-discrete finite 
element form of Reynolds equation can be expressed 
as

1 1nn n np p

nnw s

C P K P

C W Q
(17)

where is the iteration number. The detailed 
components of matrices [ ], [ ], [ ] and vector { } are expressed as

3

, , , , ˆ1
e

n np
ij i x j x i y j yK P w d (18)

= (1 + ( )) (19)

= ( ) (20)
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= ( ) 1 + ( ) ( ) (21)

Fully discretized form of equation of motion has 
been developed by means of Newmark time 
discretization (trapezoidal rule). Fully discretized form 
of Reynolds equation is developed as( ){ }( ) = ( ) (22)
where and can be obtained by applying 
forward time difference for and backward time 
difference for as( ) = 1 [ ]( ) + [ ]( ) (23)

1

1
n np

n

n n nw

C P
f

t C W W
(24)

where is time step. In each time step first equation 
of motion is solved. The Eq. 22 is solved using 
deflection calculated from Eq. 13. The numerical 
integration over element area is performed using 
Gaussian quadrature method.

4. Results and discussion

In order to study dynamic behavior of microsystem, 
first convergence study of the model has been 
examined. For this purpose, a microstructure with strip 
electrodes subjected to zero initial condition and a 
suddenly applied voltage with the non-dimension 
voltage parameter of = 0.3 has been considered. Fig. 
2(a) and (b) shows the non-dimension midpoint 
deflection for non-dimension parameters of = 0,= 1000 and = 5 for various time increments 
and number of elements. It can be concluded that using < 0.005 and > 288 results in a good 
convergence.

In order to validate the model, results are compared 
with data presented in previous researches for static 
pull-in parameters. The effect of Inertia and fluid 
pressure are ignored in equation1 to obtain static 
behavior equation. Static pull-in parameters 
investigated in the present study using finite element 
method are compared with those calculated using 
Meshless Local Petrov Galerkin method performed by 
Batra et al [3] in Fig. 3 for three sample geometries: 
rectangular strip, annular disk and circular disk. Also 
dynamic pull-in parameters are calculated in the 
present study neglecting the effect of fluid losses and
are compared with static ones in Fig. 3. Pull-in 
parameter versus is shown in Fig. 3(a) for three 
geometries.

a
b

Fig. 2. Midpoint deflection time history for (a) various time increments and (b) different number of elements. For  = 0,= 1000 and 0 = 5
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This figure shows the effect of scale on pull-in 
parameters. shows the critical value of voltage and 
non-dimension parameter shows the effect of 
Casimir force. and depend upon device size 
through and respectively. Scaling down 
the device dimensions by a factor F ( and 

) results in increase in by factor of and 
by factor of . Thus as the device dimensions 

decrease increase much faster than . So the effect 
of Casimir force becomes more significant. It is 
obvious in Fig. 3(a) that as increases (decrease in 
system dimensions) the static and dynamic pull-in 
parameter decreases. The intersection of curves 
with the horizontal axis represents the critical value of 

Casimir force parameter . When = pull-in 
instability occurs with no voltage applied and system 
collapses. This phenomenon is very important in 
design and fabrication process. Fig. 3 also shows the 
effect of inertia on pull-in parameters. It is obvious that 
dynamic pull-in voltage is lesser than static ones. Fig. 
3(b) shows the nondimensional maximum deflection 
occurs when = versus . It is obvious that as 
increases the nondimensional maximum deflection 
decreases. So a reduced deflection ranges are 
allowable for small devices. Also it is noticeable that 
maximum deflection due to static pull-in is lesser than 
maximum deflection due to dynamic pull-in 
instability.
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Fig. 3. (a) pull-in parameter (b) maximum nondimensional deflection versus Casimir force parameter for three geometries

Fig. 4 shows the (dynamic pull-in voltage 
to static pull-in voltage) ratio versus Casimir force 
parameter for three geometries. Tajalli et al [22] and 
Krylov and Maimon [9] have calculated the ratio of 
dynamic pull-in voltage to static pull-in voltage for 
different microstructures (microplates with different 
lengths and initial stresses) neglecting the effect of 
Casimir force. The have observed that is 

almost 0.9. But fig. 4 shows the effect of Casimir force 
on the ratio. It is obvious that as increases 
(system size decreases) the decreases.

Phase portrait for the undamped strip structure is 
plotted for = 0.2 and different non-dimension 
voltage parameters in Fig. 5. It is shown in this figure 
that dynamic instability occurs at = 0.77.

Fig. 4. ratio versus Casimir force parameter for three geometries
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Fig. 5. Phase portrait of an undamped strip structure for = 0.2
Midpoint deflection time history of a strip 

electrode for = 0.2 is shown in Fig. 6. This figure 
shows that when voltage exceeds the critical value a 
qualitative change occurs in the dynamic behavior of 
system and system becomes dynamically instable. It is 
obvious that for voltage parameter lower than its 

critical value the structure performs a periodic motion 
while for voltage parameter higher than critical value 
the electrode sticks to substrate and system collapses. 
It is also noticeable that the oscillation amplitude 
increases as voltage parameter increases.

Fig. 6. Midpoint deflection time history of an undamped strip structure for = . and different voltage parameters 
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Fig. 7 Shows the effect of squeeze film air on the 
dynamic behavior of the system. Casimir force effect 
is neglected. Midpoint deflection time history is 
plotted for = 0.8 and = 4000 for various non-
dimension ambient pressure parameters in this figure. 
It is obvious that the amplitude of oscillation decreases 
with an increase in ambient pressure.

The effect of non-dimension parameter on the 
dynamic behavior is shown in Fig. 8. Midpoint 
deflection time history is plotted for various non-
dimension parameter for = 0.8 and Casimir force 
effect is neglected. This figure shows that as 
increases maximum overshoot of vibration decreases 
but the oscillations would be damped later.

Fig. 7. Midpoint deflection time history of a strip membrane for various ambient pressure non-dimension parameters for = .
and =

Fig. 8. Midpoint deflection time history of a strip membrane for = 0.8 and = 0 for various non-dimension parameters 

In Fig. 9 the response of a strip microstructure to 
suddenly applied voltage considering the effect of 

squeeze film air damping is shown. The effect of 
Casimir force is ignored. Midpoint deflection time 
history is plotted for = 4000 and = 5 for various 
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voltage parameters . It is obvious that as increases, 
the amplitude of vibrations and the amplitude of 
steady-state motion increase.

5. Conclusions

The main idea of the present study was to model 
MEMS and NEMS using linear elastic membrane 
theory. In this study, the effect of Casimir force and 
squeeze film air on the static and dynamic pull-in 
instability and dynamic behavior of system has been 
investigated. Fluid losses were modeled using 
nonlinear Reynolds equation. Finite element method 
was applied to discretize and solve the governing 

equations for three considered geometries. Results 
showed that as the device sizes decrease, the effect of 
Casimir force becomes more important. There is a 
minimum size for device in the fabrication process at 
which system collapses without applying any voltage. 
Also the effect of system size and Casimir force on 

ratio has been investigated. It has been 
observed that with a decrease in system sizes the ratio 
of dynamic pull-in voltage to static pull-in voltage 
decreases. Results showed the significant effect of 
squeeze film air and ambient pressure on the dynamic 
behavior of membrane-based MEMS.

Fig. 9. Midpoint deflection time history for = 4000 and 0 = 5 for various voltage parameters 
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