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Abstract

Numerous empirical correlations exist for the estimation of crude oil 
viscosities. Most of these correlations are not based on the experimen-
tal and field data from Iranian geological zone. In this study several 
well-known empirical correlations including Beal, Beggs, Glasso, Labe-
di, Schmidt, Alikhan and Naseri were optimized and refitted with the 
Iranian oil field data. The results showed that the Beal and the Labedi 
methods were not suitable for estimation of the viscosity of the Iranian 
crudes, while the Beggs, Glasso and Schmidt methods gave reasonable 
results. The Naseri’s correlation and their present method proved to 
be the best classical methods investigated in this study. Two new in-
telligent methods to predict the viscosity of Iranian crudes have also 
been introduced. The study also showed that the neural network and 
SVM give much better results comparing to classical correlations.  It is 
claimed that this study may provide more exact results for the predic-
tion of Iranian oil viscosity. 
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1. Introduction

Middle East countries contain at least 60 
percentages of the world’s proved oil res-
ervoirs. Most of these reservoirs locate in 

the six oil rich countries of Iran, Iraq, Saudi Arabia, 
Kuwait, Qatar and United Arab Emirates. As the ra-
tio of oil production to proved reservoirs in these 
countries is considerably lower than other parts of 
the world, this share is expected to rise in the next 

few decades. So it is clear that the commercial oils 
of these countries will be more important in the 
future oil market and industry. The crude oil is a 
complicated mixture of too many components and 
cannot be treated like normal multi-component 
mixtures. In most cases, the process engineers 
have to calculate the various physical oil proper-
ties without even knowing the exact composi-
tion. Therefore, the conventional thermodynamic 
methods usually are not applied to crude oil and 
oil products. The physical properties of these mix-
tures are usually estimated by means of numerous 
empirical correlations based on the limited experi-
mental laboratory or field data of certain kinds of 
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crude oils or oil products. The accuracy of these 
empirical correlations generally depends on the 
degree of similarity between the sample crude oil 
and the original experimental data set forming the 
basis of the correlation. To say it in another way, 
if the original correlation is mainly based on the 
experimental data of certain kinds of crude such as 
West Texas Intermediate (WTI) or Brent oil of the 
North Sea, the estimation would be most accurate 
for these kinds of crude oils or some similar crude 
but the correlation would be expected to give poor 
results for a different kind of crude oil.

The composition and properties of different 
crude oils vary widely. Even different crudes from 
a unique geographical region such as Persian Gulf 
or Caspian Sea are different from each other but 
these differences are not usually so sharp. There-
fore, the physical properties of the crude oils of 
different Middle East countries are different from 
each other but of course, these differences are less 
distinct comparing to other crudes from different 
geological locations such as North Sea or Venezu-
ela. Most of the empirical correlations used in the 
oil industry are developed on the basis of experi-
mental data from oil fields in the other parts of the 
world such as North America. Therefore, it can be 
expected that most of these correlations may give 
poor predictions of the physical properties of the 
Middle East crudes. 

It was noted that the Middle East’s global share 
of oil production will considerably rise in the future 
decades, so the commercial importance of these 
kinds of crude oils justifies the reconsideration and 
re-establishment of empirical correlations. 

On the other hand, the intelligent methods have 
been widely used in different sectors of the oil in-
dustry in recent years. During the recent decades 
the petroleum industry has experienced a rapid 
increase in the applications of the artificial intel-
ligence methods. Mohaghegh et al. [1] introduced 
a new model that used the pattern capabilities of 
the neural networks to characterize the reservoir 
heterogeneity. They used a three layer, feed for-
ward, back propagation network and their input 
variables consisted of spatial coordinates, well logs 
and geological interpretations.  Romero and Carter 
[2] used genetic algorithm (GA) for reservoir char-
acterization. They applied their GA model to a real-
istic complex synthetic reservoir and claimed that 
their GA based method give better results in com-
parison to other conventional methods. Nikravesh 
and Aminzadeh [3] studied the intelligent reservoir 
characterization methods. They concluded that the 
soft computing methods including neural network, 
fuzzy logic, genetic algorithm and probabilistic 

reasoning are more tolerant than the conventional 
hard computing techniques and may play a key role 
in this field. Esmaeilzadeh and Nourafkan [4] calcu-
lated the original oil in place (OOIP) in the oil res-
ervoirs using genetic algorithm. They used a two-
stage method using the genetic algorithm in the 
first stage to initialize and identify the search zone. 
The final results were then obtained from a simplex 
method. They applied their technique to three dif-
ferent cases and concluded that this method is able 
to solve the problem in cases that are not solvable 
by conventional methods. El-Sebakhy predicted the 
PVT properties of crude oils by means of support 
vector machines (SVM). He reported that the SVM 
performance was more reliable and accurate in 
comparison with other published correlations [5]. 
Emera and Sarma [6] used the genetic algorithm to 
estimate the CO2-Oil minimum miscibility pressure 
and claimed that their GA based method is superi-
or to other methods. Alomair et al. [7] developed a 
new model for dead oil viscosities of Kuwaiti heavy 
crude oils at elevated temperatures. Hemmati-
Sarapardeh et al. [8] used support vector machine 
(SVM) soft computing technique to provide predic-
tive models for dead oil viscosities. Their original 
data bank consisted of over 1500 data sets from 
different geological locations. 

Viscosity is usually considered as one of the 
most important physical properties of crude oil. 
Numerous processes such as oil production and 
transportation, transport phenomena such as 
heat and mass transfer and so on depend on the 
precise evaluation of this property. Due to the 
complexity and unknown composition of crude 
oil and oil products, the petroleum engineer of-
ten uses the empirical correlations to predict the 
oil viscosity. These empirical correlations are fit-
ted with laboratory and field data which are usu-
ally gathered from very different geological loca-
tions at the Middle-East oil producing countries. 
In this study, we aim to check the applicability of 
the common empirical correlations to estimate 
the viscosity of Iranian crudes. A large data bank 
of the viscosity of Iranian crudes was collected 
from different sources. The difference between the 
calculated and experimental results was used as a 
measure tool to compare the different correlations 
with each other. The coefficients of some well-
known correlations were re-fitted using Iranian 
field data to improve their precision when apply-
ing to Iranian crudes. A completely new empirical 
correlation based on the dead oil viscosity of the 
Iranian crudes, was also developed. Of course this 
new correlation is expected to be more precise in 
prediction of the viscosity of Iranian and similar 
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crudes.   On the other hand, it was tried to use new 
intelligent methods to estimate the viscosity of the 
crude oils and compare their performance with 
the previous classical methods. These intelligent 
methods were trained using the collected viscos-
ity data, so they are believed to give better results 
for Iranian and probably similar crudes of other 
Middle-East countries. It is clear that as the total 
share of the commercial oil production of Middle-
East countries is expected to rise continuously in 
the next few decades, the refitted and new meth-
ods introduced in this study may be more widely 
used in near future. El-Hoshoudy et al. [9] used a 
similar procedure for prediction of viscosity and 
density of Egyptian oil reservoirs. 

Oil viscosity is measured in four different re-
gions which are described as follows:
1.	 The oil viscosity at the bubble point pressure 

that refers to oil at the reservoir temperature 
and bubble pressure. This kind of viscosity is 
usually called saturated crude oil viscosity.

2.	 The oil viscosity in a pressure lower than the 
bubble pressure which is called under-saturat-
ed oil viscosity. As the oil pressure decreases 
from the bubble pressure, the dissolved gases 
release from the oil and the oil viscosity chang-
es as a result.

3.	 If the oil pressure falls to lower than atmo-
spheric pressure, nearly all of the dissolved 
gases release from the oil and the oil is called 
the dead or stock oil. Dead oil viscosity is an-
other important kind of oil viscosity and we 
are going to consider this kind of oil viscosity 
in this paper.

4.	 If the oil exists in a pressure higher than bubble 
pressure, it is called live oil and its viscosity is 
known as the live oil viscosity. 
All of these four different kinds of oil viscosity 

have been studied in this research, but all of them 
cannot be presented in a single paper, so only the 
dead oil viscosity is considered here and the other 
three kinds of oil viscosity will be considered in 
other publications. 

2. The Empirical Correlations for Dead 
Oil Viscosity 

Several empirical models exist for the estimation 
of dead oil viscosity, some of them have been found 
to give reasonable results for Iranian samples. 
Many new empirical correlations have been intro-
duced in recent years [10-11] but in this paper, we 
have focused on those empirical methods which 
have been tested for Iranian crudes.

In 1946, Beal introduced a graphical method 
for estimation of dead oil viscosity [12]. This graph 
was mainly based on the Californian field data. In 
1981, Standing substituted the Beal’s graph by the 
following formula:

        (1)

In 1975 Beggs and Robinson introduced an em-
pirical correlation to determine the dead oil vis-
cosity [13]. This empirical method is presented in 
the following formulas:
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follow: 
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the main aims of this study was to re-fit the 
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the collected viscosity data bank. The re-
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These statistical measures have been 
calculated for all of the above-mentioned 
correlations and the results have been 
summarized in table 1 and fig.1. 
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These networks have been successfully used 
in many different types and architectures, 
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perceptron and radial basis function are two 
of the most popular architectures for 
prediction of physical properties of fluids. It 
has been reported that multi-layer feed 
forward neural network with one hidden 
layer is able to approximate any complicated 
nonlinear function [19], thus a multi-layer 
feed forward perceptron neural network with 
two hidden layers has been used in this work 
to correlate the dead oil viscosity of Iranian 
crudes. Figure 2 shows the general structure 
of the ANN architecture used in this work.  
Weight factors connect the different neurons 
in each layer. Except the input layer, other 
layers receive a sum of inputs. The sigmoid 
transfer function is used in this study 
because of easy derivation evaluation [20]. 
It is necessary to train an artificial neural 
network before being used for a specific 
application. This process is a step by step 
method for calculation of the optimized 
weight factors and biases. During the 
training, the new outputs are generated by 
the network, iteratively. The sequential 
weight/bias rule is one of the most 
commonly used training methods and is also 
applied in this study. Initial weights are first 
generated randomly at the first step. Then 
the inputs are entered into the input layer 
and move forward through the hidden layers 
of neurons to the output layer and the 
generated output would be compared with 
the experimental dead oil viscosity. 
Changing the weight factors may decrease 
the calculated errors. After the training 
process, the network can be used to predict 
the dead oil viscosity. 
Scaling of the output and input values may 
improve the increase in the network 
performance. In this work both inputs and 
outputs are scaled between 0.1 and 0.9 as 
follows: 
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Weight factors connect the different neurons 
in each layer. Except the input layer, other 
layers receive a sum of inputs. The sigmoid 
transfer function is used in this study 
because of easy derivation evaluation [20]. 
It is necessary to train an artificial neural 
network before being used for a specific 
application. This process is a step by step 
method for calculation of the optimized 
weight factors and biases. During the 
training, the new outputs are generated by 
the network, iteratively. The sequential 
weight/bias rule is one of the most 
commonly used training methods and is also 
applied in this study. Initial weights are first 
generated randomly at the first step. Then 
the inputs are entered into the input layer 
and move forward through the hidden layers 
of neurons to the output layer and the 
generated output would be compared with 
the experimental dead oil viscosity. 
Changing the weight factors may decrease 
the calculated errors. After the training 
process, the network can be used to predict 
the dead oil viscosity. 
Scaling of the output and input values may 
improve the increase in the network 
performance. In this work both inputs and 
outputs are scaled between 0.1 and 0.9 as 
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It is clear that the coefficients of these 
correlations are found by fitting curves with 
a certain set of the experimental data. One of 
the main aims of this study was to re-fit the 
coefficients of these correlations for Iranian 
samples. This re-fit was done with the aid of 
the collected viscosity data bank. The re-
constructed correlations are given as 
follows: 
The optimized Glaso formula was found to 
be: 
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These statistical measures have been 
calculated for all of the above-mentioned 
correlations and the results have been 
summarized in table 1 and fig.1. 
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methods.

3. The Neural Network Model

Neural networks generally consist of three main 
layers called input, hidden and output. These net-
works have been successfully used in many dif-
ferent types and architectures, and are consist of 
same elements such as nodes, layers and connec-
tions. Multi-layer perceptron and radial basis func-
tion are two of the most popular architectures for 
prediction of physical properties of fluids. It has 
been reported that multi-layer feed forward neural 
network with one hidden layer is able to approxi-
mate any complicated nonlinear function [19], thus 
a multi-layer feed forward perceptron neural net-
work with two hidden layers has been used in this 
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work to correlate the dead oil viscosity of Iranian 
crudes. Figure 2 shows the general structure of the 
ANN architecture used in this work. 

Weight factors connect the different neurons 
in each layer. Except the input layer, other layers 
receive a sum of inputs. The sigmoid transfer func-
tion is used in this study because of easy deriva-
tion evaluation [20].

It is necessary to train an artificial neural net-
work before being used for a specific application. 
This process is a step by step method for calcula-
tion of the optimized weight factors and biases. 
During the training, the new outputs are generated 
by the network, iteratively. The sequential weight/
bias rule is one of the most commonly used train-
ing methods and is also applied in this study. Initial 
weights are first generated randomly at the first 
step. Then the inputs are entered into the input 
layer and move forward through the hidden layers 
of neurons to the output layer and the generated 
output would be compared with the experimental 
dead oil viscosity. Changing the weight factors may 
decrease the calculated errors. After the training 
process, the network can be used to predict the 
dead oil viscosity.

Scaling of the output and input values may im-
prove the increase in the network performance. In 
this work both inputs and outputs are scaled be-
tween 0.1 and 0.9 as follows:

(23)

The dead oil viscosity data were randomly di-
vided into two main groups which consisted 70% 
and 30% of the total data, respectively. The first 
group was used to train and the second group was 
used to test the trained network. The number of 
the neurons in the hidden layer of the neural net-
work was found to be equal to 20. Fig. 3 shows the 
graphical representation of the neural network. 
Moreover, the characteristics of the optimized 
neural network are also summarized in Table 2.

Fig. 4 also compares the results of this section 
with the experimental data.

Mean square error has been used to compare 
the different prediction methods. 
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4. Support Vector Machine

Vapnic [21] introduced the support vector ma-
chines (SVMs) in 1998. The advantage of this 
method is that it obtains the solution by solving 
the quadratic programming (QP) and avoids the 
local minima [22]. Obtaining the final SVM model 
can be very difficult because it is necessary to solve 
a set of nonlinear equations. A simplified version 
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Table 2. The characteristics of the optimized neural network for Iranian dead oil viscosity.

Number of neurons Learning algorithm Transfer function of the 
input layer

Transfer function of the 
output layer MSE

20 Sequential waight/bias 
rule Sigmoid Purelin 0.014
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
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   The following regression model is 
constructed by using nonlinear mapping 
function  .  : 

 




MRRRb
bxWy

MN

T

,:,
,RW      with. N



     (26)                                     

   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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These equations are constrained by: 
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Where, 𝛾𝛾 is the regularization parameter and 
𝑒𝑒𝑘𝑘 is the desired error.The problem may be 
solved by a Lagrangian function as: 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 

 




 N

k
kk xW

W
L

1

.0        (30)                                                                                   






 N

k
kW

b
L

1

00             (31)                                                                                         

N1,...,k 

    .0







kk
k

e
e
L 

            (32)                                               

 

N1,...,k    

 0,.0







kk
T

k

yebxWL 
  (33)                                                   

The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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Figure 3: graphical representation of the neural network 
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Figure 3. Graphical representation of the neural network.
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
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   The following regression model is 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, k  is called the support value. Partial 
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The Karush-Kuhn-Trucker (KKT) system is 
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of SVM called least square support vector machine 
(LS-SVM) leads to a set of linear equations. The 
support vector machine is also used to recognize 
the hidden patterns and to classify the input data 
by means of least square method, but SVM is more 
generalized in comparison to ANN. SVM is consid-
ered to belong to Kernel methods.  

Given a set of training data like this:

       (25)                                                                                     

The following regression model is constructed 
by using nonlinear mapping function φ(.):

     (26)                                    

where b is the bias and W is the weight vector. If 
the least-squares support vector is used as an ap-
proximation function, a new problem has to be 
solved. The optimization of LS-SVM is given as:
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These equations are constrained by:

           (28)                                                                                 
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Lagrangian function as:
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entiating with respect to each variable leads to the 
solution.
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Figure 6: Comparison of different correlations for prediction of Iranian dead oil viscosity 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
     NN
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constructed by using nonlinear mapping 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, 𝛾𝛾 is the regularization parameter and 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
     NN
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   The following regression model is 
constructed by using nonlinear mapping 
function  .  : 

 




MRRRb
bxWy

MN

T

,:,
,RW      with. N



     (26)                                     

   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, 𝛾𝛾 is the regularization parameter and 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  

n

xcalx
mse

 


2)exp(
        (24)                                                                                                     

4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
     NN

kk RRyxyx ,..., 11       (25)                                                                                      

   The following regression model is 
constructed by using nonlinear mapping 
function  .  : 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, 𝛾𝛾 is the regularization parameter and 
𝑒𝑒𝑘𝑘 is the desired error.The problem may be 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, 𝛾𝛾 is the regularization parameter and 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  

n

xcalx
mse

 


2)exp(
        (24)                                                                                                     

4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
     NN
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   The following regression model is 
constructed by using nonlinear mapping 
function  .  : 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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These equations are constrained by: 
  1...Nk   ,.  k

T ebxWy            (28)                                                                                  
Where, 𝛾𝛾 is the regularization parameter and 
𝑒𝑒𝑘𝑘 is the desired error.The problem may be 
solved by a Lagrangian function as: 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
     NN
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   The following regression model is 
constructed by using nonlinear mapping 
function  .  : 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, 𝛾𝛾 is the regularization parameter and 
𝑒𝑒𝑘𝑘 is the desired error.The problem may be 
solved by a Lagrangian function as: 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
     NN
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   The following regression model is 
constructed by using nonlinear mapping 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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These equations are constrained by: 
  1...Nk   ,.  k

T ebxWy            (28)                                                                                  
Where, 𝛾𝛾 is the regularization parameter and 
𝑒𝑒𝑘𝑘 is the desired error.The problem may be 
solved by a Lagrangian function as: 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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The Karush-Kuhn-Trucker (KKT) system is 
obtained as the variable w and e are 
removed: 
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(23) 
The dead oil viscosity data were randomly 
divided into two main groups which 
consisted 70% and 30% of the total data, 
respectively. The first group was used to 
train and the second group was used to test 
the trained network. The number of the 
neurons in the hidden layer of the neural 
network was found to be equal to 20. Figure 
3 shows the graphical representation of the 
neural network. Moreover, the characteristics 
of the optimized neural network are also 
summarized in table 2. 
Figure 4 also compares the results of this 
section with the experimental data. 
Mean square error has been used to compare 
the different prediction methods.  
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4. Support Vector Machine 
Vapnic [21] introduced the support vector 

machines (SVMs) in 1998. The advantage of 
this method is that it obtains the solution by 
solving the quadratic programming (QP) and 
avoids the local minima [22].   Obtaining the 
final SVM model can be very difficult 
because it is necessary to solve a set of 
nonlinear equations. A simplified version of 
SVM called least square support vector 
machine (LS-SVM) leads to a set of linear 
equations. The support vector machine is 
also used to recognize the hidden patterns 
and to classify the input data by means of 
least square method, but SVM is more 
generalized in comparison to ANN. SVM is 
considered to belong to Kernel methods.   
Given a set of training data like this: 
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   Where b is the bias and W is the weight 
vector. If the least-squares support vector is 
used as an approximation function, a new 
problem has to be solved. The optimization 
of LS-SVM is given as: 
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Where, k  is called the support value. Partial 
differentiating with respect to each variable 
leads to the solution. 
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Where,  jk xxK ,  is called the RBF kernel 
function. 
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The LS-SVM regression model can be 
shown as: 
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Where (b, α) can be found by solution of Eq. 
27. 
The experimental data were divided 
randomly into two different groups as for 
neural networks model.  70% of the 
experimental data were used for training and 
the remaining for testing the trained SVM. 
All of the figures were normalized into [0.1, 
0.9] range to eliminate the effect of the 
figures’ magnitude on their real value. The 
results of the SVM regression for Iranian 
dead oil viscosity are summarized in the 
table 3 and Figure 5. 
 
5. Comparison of the methods 
Figure 6 compares the experimental data 
with the predictions of the different methods. 
 This figure is arranged in term of API of the 
samples and clearly shows that the different 
prediction methods behave differently for 
Iranian crude samples. Most of the 
prediction methods except the Beal’s, under-
predict the viscosity and it is clear that the 
optimized correlations are generally more 
accurate than the original ones. The least 
square error of the different methods used in 
this study is also listed in the table 4. The 
results of this table show that the Beal and 

the Labedi methods are not suitable for 
estimation of the viscosity of the Iranian 
crudes. While the Beggs, Glasso and 
Schmidt methods give reasonable results. 
The least square errors of the Neural 
Network and SVM methods are much less 
than the classical methods.  
From comparing these two last methods with 
each other, it is clear that the SVM method 
is more exact than the neural network model. 
 
6. Conclusions 
The results of this study show that the 
classical correlations give huge errors for 
Iranian dead oil viscosity. Optimization of 
the original classical methods always gives 
better estimations and this technique may be 
extended to other physical properties. The 
study also showed that the statistical 
methods of neural network and SVM give 
much better results comparing to the 
classical correlations. The results in table 4 
showed that the Naseri’s equation is better 
than the other empirical equations which 
may be due to the fact that it was originally 
based on the Iranian dead oil viscosities. On 
the other hand intelligent methods are more 
accurate than classical methods and this 
research implies that the SVM method is 
much more accurate than the neural network 
model. 
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Where (b, α) can be found by solution of Eq. 
27. 
The experimental data were divided 
randomly into two different groups as for 
neural networks model.  70% of the 
experimental data were used for training and 
the remaining for testing the trained SVM. 
All of the figures were normalized into [0.1, 
0.9] range to eliminate the effect of the 
figures’ magnitude on their real value. The 
results of the SVM regression for Iranian 
dead oil viscosity are summarized in the 
table 3 and Figure 5. 
 
5. Comparison of the methods 
Figure 6 compares the experimental data 
with the predictions of the different methods. 
 This figure is arranged in term of API of the 
samples and clearly shows that the different 
prediction methods behave differently for 
Iranian crude samples. Most of the 
prediction methods except the Beal’s, under-
predict the viscosity and it is clear that the 
optimized correlations are generally more 
accurate than the original ones. The least 
square error of the different methods used in 
this study is also listed in the table 4. The 
results of this table show that the Beal and 

the Labedi methods are not suitable for 
estimation of the viscosity of the Iranian 
crudes. While the Beggs, Glasso and 
Schmidt methods give reasonable results. 
The least square errors of the Neural 
Network and SVM methods are much less 
than the classical methods.  
From comparing these two last methods with 
each other, it is clear that the SVM method 
is more exact than the neural network model. 
 
6. Conclusions 
The results of this study show that the 
classical correlations give huge errors for 
Iranian dead oil viscosity. Optimization of 
the original classical methods always gives 
better estimations and this technique may be 
extended to other physical properties. The 
study also showed that the statistical 
methods of neural network and SVM give 
much better results comparing to the 
classical correlations. The results in table 4 
showed that the Naseri’s equation is better 
than the other empirical equations which 
may be due to the fact that it was originally 
based on the Iranian dead oil viscosities. On 
the other hand intelligent methods are more 
accurate than classical methods and this 
research implies that the SVM method is 
much more accurate than the neural network 
model. 
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Table 4. Comparison of the different methods.

Table 3. The characteristics of the optimized SVM for Ira-
nian dead oil viscosity.

Type of Kernel function  γ σ MSE

Radial 100 1.3096 0.0063

SVMN.N.naseriAlikhnSchmidtLabediGlassoBeggsBealMethod

0.07391.95923.7847.5632.92116.933.1426.54369.86 Minimum least square
Error

5. Comparison of the Methods

Figure 6 compares the experimental data with the 
predictions of the different methods.

This figure is arranged in term of API of the sam-
ples and clearly shows that the different predic-
tion methods behave differently for Iranian crude 
samples. Most of the prediction methods except the 
Beal’s, under-predict the viscosity and it is clear 
that the optimized correlations are generally more 
accurate than the original ones. The least square 
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method is much more accurate than the neural net-
work model.
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