تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,032 |
تعداد مشاهده مقاله | 125,502,173 |
تعداد دریافت فایل اصل مقاله | 98,766,132 |
بررسی توابع همبستۀ امواج کدای پراکندۀ ناشی از توابع همبستۀ نوفۀ لرزهای محیطی، در تعیین توابع گرین تجربی بهینه در گسترۀ آذربایجان، ایران | ||
فیزیک زمین و فضا | ||
مقاله 7، دوره 43، شماره 2، مرداد 1396، صفحه 323-337 اصل مقاله (1.44 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2017.60286 | ||
نویسندگان | ||
مهسا صفرخانی1؛ تقی شیرزاد* 2 | ||
1کارشناسی ارشد،گروه فیزیک زمین، مؤسسۀ ژئوفیزیک، دانشگاه تهران، ایران | ||
2استادیار، گروه فیزیک، دانشگاه آزاد اسلامی واحد دماوند، دماوند، ایران | ||
چکیده | ||
روش مبتنی بر نوفۀ لرزهای محیطی از ابزارهای قدرتمند در تعیین اطلاعات ساختار پوسته و گوشتۀ بالایی زمین به شمار میآید. فرض اساسی در این مطالعات، بازسازی توابع گرین تجربی میان ایستگاهی، با استفاده از تکنیک همبستهسازی میدانهای موج پراکندۀ عبوری میان جفت ایستگاهها در زمان یکسان است. شکل موجهای میدان موج پراکندۀ ثبتشده، علاوه بر نوفۀ لرزهای محیطی، به امواج کدای پراکنده نیز میانجامد. در این پژوهش با بهرهگیری از بخش امواج کدای توابع همبستۀ نوفۀ لرزهای محیطی، به تعیین توابع گرین تجربی بهینه در گسترۀ آذربایجان (عرض جغرافیایی°39 -°37 درجۀ شمالی و طول جغرافیایی °48 -°45 درجۀ شرقی) پرداختهایم. برای این منظور از همبستهسازی دادههای پیوستۀ مؤلفۀ قائم، ثبتشده توسط هفت ایستگاه سرعتنگار دورۀ کوتاه در این گستره بهره جستهایم. نتایج این مطالعه نشان میدهد که انحراف معیار استاندارد ناشی از اختلاف زمانرسید مد پایۀ امواج ریلی توابع گرین به دست آمده، حاصل از روش نوفۀ لرزهای محیطی و روش امواج کدای حاصل از توابع همبستۀ نوفۀ لرزهای محیطی، در تأخیر زمان مثبت و منفی به ترتیب برابر با 21/0 و 35/0 ثانیه (خطای سرعت معادل با 02/0 کیلومتر بر ثانیه در تأخیر زمان مثبت و منفی) است. همچنین ضرایب همبستگی متقابل حاصل از سیگنالهای به دست آمده در بخشهای تأخیر زمان مثبت و منفی نیز برابر با 98/0 و 96/0 است و شباهت بسیار زیاد نتایج حاصل از دو روش را نشان میدهد. | ||
کلیدواژهها | ||
آذربایجان؛ امواج کدای پراکنده؛ توابع گرین تجربی؛ نوفۀ لرزهای محیطی | ||
مراجع | ||
صفرخانی، م. ، 1394، برآورد توابع گرین بهینه و بررسی جهتیافتگی آنها در گستره آذربایجان، ایران با استفاده از نوفههای لرزهای محیطی، پایاننامه کارشناسی ارشد در رشته زلزلهشناسی، موسسه ژئوفیزیک دانشگاه تهران، 81-71. Aki, K. and Richards, P. G., 1980, Quantitative seismology: theory and methods, W. H. Freeman, San Francisco. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M. and Yang, Y., 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169, 1239–1260. Berger, J., Davis, P. and Ekström, G., 2004, Ambient Earth noise: A survey of the Global Seismographic Network, J. Geophys. Res., 109, B11307, doi:10.1029/2004JB003408. Boué, P., Poli, P., Compillo, M. and Roux, P., 2014, Reverberations, coda wave sand ambient noise: Correlations at the global scale and retrieval of the deep phases, Phys. Earth Planet. In., 391, 137–145. Campillo, M. and Paul, A., 2003, Long-range correlations in the diffuse seismic coda, Science, 299(5606), 547–549. Cho, K. H., Herrmann, R. B., Ammon, C. J. and Lee, K., 2007, Imaging the upper crust of the Korean peninsula by surface-wave tomography, Bull. Seismol. Soc. Am., 97, 198-207. Duvall, T. L., Jefferies, S. M., Harvey, J. W. and Pomerantz, M. A., 1993, Time distance helioseismology, Nature, 362, 430–432. Froment, B., Campillo, M. and Roux, P., 2011, Reconstructing the Green’s function through iteration of correlations C. R. Geoscience this issue; DOI:10.1016/j.crte.2011.03.001. Garnier, J., Papanicolaou, G., 2009, Passive sensor imaging using cross-correlations of noisy signals in a scattering medium, SIAM Journal on Imaging Sciences, 2(2), 396-437. Gorin, T., Seligman, T. H. and Wear, R. L., 2006, Scattering fidelity in elastodynamics, Physical Rev. E., 73, 015202. Gouédard, P., Stehly, L., Brenguier, F., Campillo, M., Colin de Verdière, Y., Larose, E., Margerin, L., Roux, P., S´anchez-Sesma, F. J., Shapiro, N. M. and Weaver, R. L., 2008, Cross-correlation of random fields: mathematical approach and applications, Geophys. Prospect., 56(3), 375–393. Gutenberg, B., 1936, On microseisms, Bull. Seism. Soc. Am., 26, 111-117. Hasselmann, K., 1963, A statistical analysis of the generation of microseisms, Rev. Geophys., 1(2):177–210. Landes, M., Hubans, F., Shapiro, N. M., Paul, A. and Campillo, M., 2010, Origin of deep ocean microseisms by using teleseismic body waves, J. Geophys. Res., 115, B05302, doi:10.1029/2009JB006918. Lobkis, O. I. and Weaver, R. L., 2001, On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 3011–3017. Longuet-Higgins, M. S., 1950, A Theory of the Origin of Microseisms, Philos. Trans. R. Soc. Lond., 243, 1–35. Malcolm, A. E., Scales, J. and van Tiggelen, B. A., 2004, Extracting the Green function from diffuse, equipartitioned waves, Phys. Rev. E, 70, 015601. Margerin, L., Campillo, M., van Tiggelen, B. A. and Hennino, R., 2009, Energy partition of seismic coda waves in layered media: theory and application to Pinyon Flats Observatory, Geophys. J. Int., 177, 571–585. Mirzaei, N., Gao, M. and Chen, Y. T., 1998, Seismic source Regionalization for seismiczoning of Iran: Major seismotectonicprovinces, Journal of Earthquake PredictionRes., 7, 465-495. Obermann, A., Planès, T., Larose, E. and Campillo, M., 2013, Imaging presumptive and corruptive structural and mechanical changes of a volcano with ambient seismic noise, J. Geophys. Res. Solid Earth.,118, 6285–6294. Peterson, J., 1993, Observations and modeling of seismic background noise. Open File Report 93-322, U.S. Geological Survey. Picozzi, M., Parolai, S., Bindi, D. and Strollo, A., 2009, Characterization of shallow geology by high-frequency seismic noise tomography: Geophys. J. Int., 176, 164-174, doi: 10.1111/j.1365-246X.2008.03966.x. Poli, P., Campillo, M., Pedersen, H. and the Lapnet Working Group, 2012, Body wave imaging of the Earth’s mantle discontinuities from ambient seismic noise, Science,338, 1063–1065. Rickett, J. and Claerbout, J., 1999, Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, Leading Edge, 18, 957–960. Ritzwoller, M. H., Lin, F. C. and Shen, W., 2011, Ambient noise tomography with a large seismic array, Comptes Rendus Geoscience, 343(8), 558–570. Roux, P., Kuperman, W. A. and the NPAL Group, 2004,Extracting coherent wavefronts from acoustic ambient noise in the ocean, J. Acoust. Soc. Am., 116, 1995–2003. Roux, P., Sabra, K. G., Kuperman, W. A. and Roux, A., 2005, Ambient noise cross correlation in free space: theoretical approach, J. Acoust. Soc. Am., 117 (1), 79–84. Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A. and Fehler, M. C., 2005, Extracting time-domain Green's function estimates from ambient seismic noise, Geophys. Res. Lett., 32, L03310, doi:10.1029/2004GL021862. Shapiro, N. M. and Campillo, M., 2004, Emergence of broadband Rayleigh wavesfrom correlations of the ambient seismicnoise, Geophys. Res. Lett., 31, L07614, doi:10.1029/2004GL019491. Shapiro, N. M., Campillo, M., Margerin, L., Singh, S. K., Kostoglodov, V. and Pacheco, J., 2000, The energy partitioning and the diffusive character of the seismic coda, Bull. Seismol. Soc. Am., 90, 655–665. Shapiro, N. M., Campillo, M., Stehly, L. and Ritzwoller, M. H., 2005, High-resolutionsurface-wave tomography from ambientseismic noise, Science, 307, 1615–1618. Shirzad, T. and Shomali, Z. H., 2013, Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography, Geophys. J. Int., 196, 1162–1176. Shirzad, T. and Shomali, Z. H., 2015, Extracting seismic body and Rayleigh waves from the ambient seismic noise using the rms-Stacking Method, Seismol. Res. Lett., 86(1), 173-180. Shirzad, T. and Shomali, Z. H., 2016, Short note Extracting stable seismic core phases from ambient seismic noise, Bull. Seismol. Soc. Am., 106(1), doi:10.1785/0120150031. Shirzad, T., Shomali, Z. H. and Riahi, M. A., 2013, An application of ambient noise and earthquake tomography in the Rigan area, southeast of Iran, Seismol. Res. Lett., 84, no. 6, 1014–1020. Shomali, Z. H. and Shirzad, T., 2015, Crustal structure of Damavand volcano, Iran, from ambient noise and earthquake tomography, J. Seismol., 19(1), 191-200. Snieder, R., 2004, Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69, 046610, doi:10.1103/PhysRevE.69.046610. Stehly, L., Campillo, M. and Shapiro, N. M., 2006, A study of the seismic noise from its long- range correlation properties, J. Geophys, Res., 111,B10306, doi:10.1029/2005JB004237. Stehly, L., Campillo, M., Froment, B. and Weaver, R. L., 2008, Reconstructing Green’s function by correlation of the coda of thecorrelation (C3) of ambient seismic noise, J. Geophys. Res., 113, B11306, doi: 10.1029/2008JB005693. Stutzmann, E., Schimmel, M., Patau, G. and Maggi, A., 2009, Global climate imprint on seismic noise, Geochem. Geophys. Geosyst.,10, Q11004, doi:10.1029/2009GC002619. Van Tighelen, B. A., 2003, Green function retrieval and time-reversal in a disordered world, Physical Rev. Lett., 91, 243904. Wapenaar, C. P. A., 2004, Retrieving theelastodynamic Green’s function of an arbitraryinhomogeneous medium by cross correlation, Phys. Rev. Lett., 95, 254-301. Weaver, R., Froment, B. and Campillo, M., 2009,On the correlation of non-isotropically distributed ballistic scalar diffuse waves,J. Acoust. Soc. Am., 126(4), 1817-1826. Weaver, R. L. and Lobkis, O. I., 2001, Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies, Phys. Rev. Lett., 87, 134-301, doi:10.1103/PhysRevLett.87.134301. Wessel, P. and Smith, W. H. F.,1998, New, improved version of the Generic Mapping Tools released, Eos Trans. AGU 79, 579. Yao, H., van der Hilst, R. D. and Van de Hoop, M., 2006, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps, Geophys. J. Int., 166, 732–744. | ||
آمار تعداد مشاهده مقاله: 2,161 تعداد دریافت فایل اصل مقاله: 1,050 |