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A B S T R A C T 

 

Truncated Gaussian Simulation (TGS) is a well-known method to generate realizations of the ore domains located in a spatial sequence. In 
geostatistical framework, the geological domains are normally utilized for stationary assumption. The ability to measure the uncertainty in 
the exact locations of the boundaries among different geological units is a common challenge for practitioners. As a simple and informative 
example of such a boundary, one can consider the boundary between ore and waste materials in an ore deposit. This boundary addresses the 
percentages of the ore and the waste and also affects the future economy of mine and all precedent mine designs and mine plans. Deterministic 
approaches, based on interpretation of geological phenomenon, provide just one scenario of ore-waste variation, and do not offer a model for 
uncertainty of boundaries. On the other hand, geostatistical simulations, based on stochastic models, can measure the uncertainty of such a 
boundary. Through different techniques for spatial simulation of the categorical data (geological domains), truncated gaussian simulation has 
been proved to be versatile when geological units have sequential geometries and/or there are few number of indicators (ore and waste). This 
study addresses the application of TGS for conditional simulation of ore and waste domains in Golgohar iron ore deposit. Separation of the 
ore and waste domains has affected the ore tonnage estimation and resource evaluation. Various simulations can be considered as the spatial 
realizations of ore and waste. TGS can generate realizations of the domains and measure the uncertainty of ore-waste boundary. The accuracy 
of results was checked through performance evaluation section and different scenarios (e.g. best, average and worst). The best scenario is the 
one with the most accuracy that is calculated from confusion matrix. The scenario No. 44 with 96 million cubic meters tonnage has an accuracy 
over 86 percent that is proposed as the best scenario for future planning and mine design. 
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1. Introduction  

Prior to grade and tonnage estimation, geological modeling has to be 
used to divide the deposit into stationary sub-domains called ‘geological 
units’. This partitioning leads to a better characterization of the grade 
distribution within the deposits [1]. Stochastic simulations are among 
the best methods for modeling domains within ore deposits. Different 
geostatistical methods have been so far developed for modeling the 

 

 

 

1 Sequential Indicator Simulation 
2 Multiple Point Simulation 

domains such as: sequential indicator simulation [2, 3], truncated 
Gaussian simulation [4], multiple point statistics and plurigaussian 
simulation [5]. 

SIS1 is a simple and strong approach for simulating the categorical 

variables [6] .Also MPS2 is another useful tool when nonlinear features 
exist, however it requires a training image containing complex features 
making the method hard to be applied [7]. Nevertheless, TGS and PGS3 
methods have increased the ability to reproduce the complex features 
comparing to SIS, without requiring a training image, although they call 
for establishment of a truncation mask showing the geological orders in 
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a flag [8].  
In this paper, in order to model ore and waste domains in Golgohar 

iron deposit, TGS has been used. The purpose is to produce different 
realizations for ore-waste boundary, and choose the best and worst 
scenarios for tonnage estimation. Based on statistical and geological 
analyses, Golgohar iron deposit consists of six different rock types 
grouped into ore and waste domains. The best realization of boundary 
strongly affects the production and mine planning [9]. This study 
implements Truncated Gaussian Simulation to model the ore and waste 
domains within Golgohar deposit. 

1.1. Truncated Gaussian Simulation 

TGS method simulates one Gaussian variable at all data locations 
within the study area and then uses a flag to transform this Gaussian 
values into the premium geological domains. Figure 1 summaries this 
process for TGS method for the case of one Gaussian field. Figure 1.b 
shows that the grey domains can touch the other two domains in which 
the black and white never touch each other. Also, these domains have a 
fixed order which is defined by the sequence stratigraphy [10]. 

 
Figure 1. (a) Simulated greytone image. Values have an N (0, 1) distribution. (b) 
Same image after being truncated at the cutoffs -0.6 and 0.5. Values below -0.6 
have been shaded dark grey, those between -0.6 and 0.5 are coloured light grey 

while values above 0.5 are shown in white [10]. 

Initially, TGS was used for simulation of an ordered category with 
locally changed proportions [5]. Suppose a vertically non-stationary 
sedimentary environment comparised shale, shaley-sandstone and 
sandstone rock types. The expected order is that shaley-sandstone 
intercalates shale and sandstone.  In Figure 2, every truncated zone 
integrates to the local rock type proportions. The continuity of rock 
types is determined by the variogram calculated for the simulation [8]. 

 
Figure 2. Sketch of truncation of Gaussian probability density function. 

Truncated probabilities integrate to the local proportion. Here, we expect 
sandstone and shale to be separated by shaly-sandstone [8]. 

A flag is a graphical sketch of the domains’ orders and contacts that 
is drawn based on geological information. In Figure 3, the flag or rock 
type rule of this sketch is shown in which shale and sandstone have no 
contact based on geological knowledge. 

 
Figure 3. The rock type rule. 

The main steps in a truncated gaussian simulation are as follow [10, 
11]: 

Step 1: Estimation of two factors controlling the simulation results: (i) 
thresholds that truncate the gaussian random field into the domains 
which are determined by the flag (rocktype rule), the proportions of 
each domains, and (ii) the variogram model of this gaussian variable that 

should reproduce the spatial relationship between the hard data. 
Step 2: While the domains are known for each sample, the 

corresponding Gaussian values are unknown. After implementing the 
truncated rule, the domains reduce to rectangles. In this step, Gibbs 
sampler method can be used to generate Gaussian values using these 
intervals in respect to variogram model. 

Step 3: Simulation of Gaussian values of variables at the grid nodes. 
In this case, any simulation approach, such as the sequential Gaussian 
or the turning band, can be implemented on the Gaussian variable in 
this step. In current study, the turning band algorithm is used. 

Step 4: In the last step, the flag is used to convert the gaussian values 
at grid nodes back into the domains. 

1.2. Gibbs Sampler 

When all or part of the data values are interval constraints rather than 
single numbers, simulation of the Gaussian random vectors is subjected 
to inequality constraints that is created in the analysis of the spatial data. 
In mineral resource evaluation, this situation occurs when the depth of 
a geological horizon is greater than the depth at which drilling has 
stopped, or a measured grade is smaller than the detection limit, or when 
working with soft data defined by lower and upper bounds [12]. Interval 
constraints exist when simulating continuous indicators and variables 
are represented by chi-square random fields, as well as by truncated 
Gaussian or plurigaussian random fields [13]. For instance, let d be a 
positive integer and consider an indicator variable obtained by 
truncating a stationary Gaussian random field 𝑌 = {𝑌(𝑥): 𝑥 ∈ 𝑅𝑑} at a 
given threshold 𝑌 ∈ 𝑅. The following procedure can be used to simulate 
the indicator [14]: 

(1) Simulate Y at the data locations, conditioned by the indicator data. 
(2) Simulate Y at the target locations of Rd, conditioned by the Y -

vector obtained in step (1). 
(3) Truncate the simulated Gaussian random field to obtain a 

realization of the indicator. 
Any multivariate Gaussian simulation algorithm can be considered in 

step (2). Regarding step (1), one can use an iterative algorithm known 
as the Gibbs sampler. 

In the second step of TGS procedure, Gaussian random function is 
simulated with a specified covariance structure considering the 
observed lithotypes (domains) at sample points. Statisticians routinely, 
use iterative methods based on Markov chain Monte Carlo simulations 
(MCMC, for short) for sampling from complicated distributions and for 
estimating the parameter values. The best known algorithms are 
Hastings-Metropolis and the Gibbs sampler algorithms [10]. The Gibbs 
sampler is an iterative algorithm being used to simulate Gaussian 
random vectors subjected to inequality constraints [15]. 

2. Presentation of the deposit and the data 

2.1. Geological description 

The Golgohar iron deposit is located at about 55 km southwest of 
Sirjan and in the eastern edge of the Sanandaj-Sirjan structural zone of 
Iran (Figure 4). The host rocks of the ore deposit include 
metamorphosed sedimentary ± volcanic rocks of the greenschist facies, 
probably of Upper Proterozoic-Lower Paleozoic age. The most 
important host rocks include shale, sandstone, gabbroic-basaltic and 
diabasic sills, diamictite and cherty carbonatic sequences that are 
transformed to thick carbonate successions in the upper units. 
Magnetite banding, granular, banded and massive textures all represent 
deposition of iron as hydromagnetite [16]. 

2.2. Dataset 

The study area has a dimention of 2750 m x 1000 m x 31921.9 m, 
respectively towards east-west, north-south and vertically. The drill 
holes were analyzed at every 3 m on average, comprising a total number 
of 11570 samples and rock type information, among which 4661 samples 
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were analyzed for Fe, S and P grades. An east-west cross section from 
the available data is shown in Figure 5.  

Ore and waste domains are separated based on the rock types with 
similar statistical characterisations to be grouped into the domains. The 
statistical analysis is done for 3 meter composites. The length of 
composites is the mode of samples length in a drillhole. In Figure 6, ore 

and waste domains are shown in different colors: red for waste and green 
for ore. The data show a clear boundary for ore and waste domains. 

The summary statistics of the iron grade are shown in Table 1. Only 
high grades of the waste domain are reported, so the statistical analysis 
shows the similar parameters of ore domains.

 
Figure 4. (a) Location of Golgohar deposit in Sanandaj-Sirjan zone [17], (b) a summarized geological map of Golgohar deposit [18]. 

 
Figure 5. A cross section of available data (iron grade). 

 
Figure 6. Distribution of available data over cross-section with north coordinate 

101565.832 m. 
 

3. Implementation of Truncated Gaussian Simulation 

3.1. Truncation threshold 

In TGS approach, one gaussian random field is used with each 
number of thresholds based on the number of the domains and their 
contacts. In this case, there is only one threshold (Figure 7). This 
gaussian field is truncated to create two domains:  

{
𝑖𝑓 𝑌 < 𝑡   𝑤𝑎𝑠𝑡𝑒

𝑖𝑓 𝑌 < 𝑡               𝑜𝑟𝑒
 

 
Figure 7. 2D flag of truncation rule for two domains. 

The truncation threshold is calculated from experimental domains 
proportions: t=0.2793 (Figure 8). 
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Table 1. Main statistics of iron grade. 

 Number of the data Mean Std. Deviation Variance Skewness Kurtosis Minimum Maximum 

Ore 4510 57.81 8.04 64.70 -1.83 4.51 8.70 68.00 

Waste 7059 43.96 13.75 189.17 -0.52 -0.681 9.30 67.10 

Total 11569 56.36 9.77 95.50 -1.80 3.59 8.70 68.00 

 
Figure 8. Implementation of rock type rule on the Gaussian variable. 

3.2.  Variogram analysis 

The gaussian random field should reproduce the spatial relationship 
of the indicators. The variogram models of the gaussian random field 
are defined using the indicators exprimental variograms. The domain 
variograms are calculated in different directions. The main direction of 

the continuity is in dip 10° with azimuth 270°. Table 2 shows the 
parameters of the gaussian random field variogram, which has the best 
fit of the indicator variograms (Figure 9). 

 
Figure 9. Sample (dots and dashed lines) and model (solid lines) indicator 

variograms along main anisotropy directions.

Table 2. Parameters of the variogram models of the Gaussian random field. 

Gaussian random field Nugget Sill Strucure Long range (m) Short range (m) Azimuth (°) Dip (°) 

Y 
0 0.5 Cubic 60 10 90 80 

0 0.5 Cubic 400 250 270 0 

3.3. Conditional simulation 

The ore and the waste domains within the deposit can be simulated 
in a block grid with 10*10*10 meters by use of the obtained parameters 
from truncated gaussian model, including flag, truncation threshold and 
variograms of the underlying Gaussian random field. The simulation 
should be conditioned to the vertical proportion curve (VPC) of 
domains (Figure 10). VPC is a simple tool to quantify the variation in 
the amount of each domains existing as a function of depth that 
calculate the proportions from experimental data. They are computed 
along lines parallel to the selected reference level [10]. In this case, the 
references level is considered parallel to the horizon because the result 
of the simulations were consistent with the interpreted geology of the 
deposit and reproduce the spatial variations of the facies proportions. 

 
Figure 10. Vertical proportion curves. 

3.4. Simulation results 

Based on the hard data at drill hole locations, 100 realizations were 
calculated on a grid with block size of 10×10×10 m. displays one of these 
realizations which have a good match with the actual data. From the 
geological point of view, the boundaries between ore and waste domains 
are reproduced. Although, randomness in simulation procedure caused 
some simulated points as ore in which there are no ore data in the 
neighborhood of such points. 

Figure 12 shows the probability map of 100 realization for ore domain. 
The map is obtained by calculating the frequency of ore over the 100 
realizations for each location. In this map, the red and orange regions 
represent certain ore domains, while the blue regions correspond to 
locations where it is unlikely to be an ore domain. The intermediate 
regions indicate a greater uncertainty on whether the ore can be found 
or not. 

3.5. Validation of the simulation 

After producing different realization of the simulated domains, one 
can validate the simulation results by checking the hard data and the 
model parameters or comparing the histograms and variograms of the 
realizations with those of the experimental data [14, 19]. Figure 13 shows 
the histograms of the experimental and simulated values. It shows that 
the percentage of the waste has increased, because of adding a specific 
volume of the waste during the simulation procedure. Figure 14 
indicates the directional variograms of the ore domain along the two 
principal directions (Dip=10 and Dip=80), calculated on the basis of 
11,570 original and 726,331 simulated values. Again, the agreement is 
satisfactory; the simulated domains reproduce variability of the input 
data but the variograms are slightly different. 
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Figure 11. A conditional realization of domains in Golgohar deposit over the (a) 

plan with elevation=1530.6m and (b) cross-section with northing 101565.8 m. 

 
Figure 12. Probability map of ore domain in Golgohar deposit over the plan with 

elevation 1530.625 m. 

 
Figure 13. Histograms of experimental and simulated values (1=ore and 2=waste). 

Finally, Figure 15 shows the convergence of the means and standard 
deviations of the facies proportions while increasing the number of 
realizations. The means of the facies proportions converge after about 

18 realizations and their standard deviations converge after about 20 
realizations.  

 

 
Figure 14. Experimental (green dashed lines), modeled (red solid lines) and post-

simulation indicator variograms (dots) of the ore domain. 

 

 
Figure 15. Dependence of the mean and standard deviation of the facies 

proportions to the number of the realizations. 
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4. Discussion 

In this paper, a stochastic approach based on geostatistical simulation 
has been proposed for domain modeling. It considers the application of 
the truncated gaussian model for simulating the boundary between 
geological domains (in this case, ore and waste domains), their spatial 
continuity (indicator variograms), the sampling information, as well as 
the prior geological knowledge on spatial distribution of domains. The 
implementation of the truncated gaussian model is quite 
straightforward and leads to realistic realization of the rock type 
distribution in the deposit. The realizations are then used to calculate 
the probabilities of occurrence of the different lithotype over the region 
of interest, which in turn are combined with the grade estimates 
obtained by ordinary kriging for each lithotype. This approach accounts 
for the uncertainty in the geology of the ore. 

Figure 16 displays the simulation results for one realization at a 
specific section at Golgohar iron deposit. Ore percentage at each data 
location within the deposit can be calculated through 100 realizations.  

There are many tools to show the uncertainty of the boundary 
modeling. TGS provides many realization of the domains, each of which 
has a specific boundary between domains. The uncertainty of the 
boundary can be computed by means of the realizations. Figure 17 
displays the ore probability and  the chance of being ore at any data 
location. Within the areas with 100 % probability of ore, it can be 
concluded that the area is 100 % ore. Therefore, at this boundary, the 
uncertainty is almost 0 %. In Figure 17, domains with 80 % probability 
of ore reveal an area with almost 20 % uncertainty of ore-waste 
boundary. 

 
Figure 16. one realization of ore-waste simulation at a selected section. 

Each realization is a scenario for ore tonnage estimation that affects 
future economy of mine and all preceding mine designs and mine plans. 
shows the most, least and moderate scenarios for ore tonnage 
estimation. As it shows, the realization number 27 has the most ore 
tonnage, but it does not mean that it is the best scenario for mine design. 
A good approach for this purpose is based on compositing matrix that 
can measure the accuracy of each realization with numbering the true 
simulated locations. All scenarios are ranked based on the calculated 
accuracies. The best scenario is the one with the most accuracy and 96 
million cubic meters tonnage, and the worst one on the other hand has 
the least accuracy. Table 4 shows the best, worst and mean scenarios for 
future mine planning. 

 

 
Figure 17. ore probabilities at a selected section.

Table 3. Ore tonnage estimation scenarios. 

 Most least Moderate 1 Moderate 2 Mean of Tonnage 

Number of 
realization sim 27 sim 100 sim 92 sim 35 --- 

Ore tonnage 
(Mm3) 

104 86 94 94 94 

      

Table 4. The accuracy of different realization. 

 Best Worst Mean Mean of accuracy 

Number of realization sim 44 sim 30 sim 100 --- 

Accuracy (%) 86.53 83.76 85.19 85.20 

Tonnage (Mm3) 96 87 86.5 --- 

 

 

5. Conclusion 

In Golgohar iron deposit, separation of the ore and waste domains 
has affected the ore tonnage estimation and resource evaluation. 
Therefore, it is necessary to model the layout of the ore domain and its 
contact with waste domain, in order to create a better and more accurate 
reproduction of the deposit features and to plan the mining process. In 
this study, the focus was on stochastic approaches, based on conditional 
simulation, in order to reproduce the spatial variability of mineralization 
and to evaluate the uncertainty of the ore-waste boundary. 

Modeling these domains boundaries is a challenge in mine planning 
and mine design. Deterministic approaches provide just one scenario of 
the domains but the stochastic methods, e.g. TGS, can generate 
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realizations of the domains and measure the uncertainty of such 
boundaries. Truncated Gaussian simulation has been proved to be 
versatile when geological units have a sequential geometry and/or there 
are few number of indicators (ore and waste). Using this method, one is 
able to propose the best scenario for future economy of mine and all 
precedent mine designs and mine plans. As a result, the scenario number 
44 is chosen to be the best scenario for ore-waste layout. 
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