تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,507 |
تعداد مشاهده مقاله | 124,127,985 |
تعداد دریافت فایل اصل مقاله | 97,235,522 |
Multi-objective optimization of compression refrigeration cycle of Unit 132 South Pars refineries | ||
Energy Equipment and Systems | ||
مقاله 6، دوره 4، شماره 2، اسفند 2016، صفحه 147-160 اصل مقاله (1.24 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ees.2016.59550 | ||
نویسندگان | ||
Ali Reza Sheibani Tezerji* ؛ Mohammad Mehdi Keshtkar | ||
Mechanical Engineering Department, Islamic Azad University, Kerman Branch, Iran | ||
چکیده | ||
The purpose of this paper is multi-objective optimization of refrigeration cycle by optimization of all components of the cycle contains heat exchangers, air condenser, evaporator and super-heater. Studied refrigeration cycle is compression refrigeration cycle of unit 132 Third refineries in south pars that provide chilled water for cooling refinery equipment's. Cycle will be performed by the genetic algorithm optimization. Thermodynamic purpose of the cycle Expressed by minimization of Exergy destruction or maximization or coefficient of performance (C.O.P), economic purpose of the cycle Expressed by minimization of cold water production cost by TRR method and environmental purpose of the cycle Expressed by minimization of NOx, CO2 and CO Which is produced by power consumption. Combination of objectives and decision variables with suitable engineering and physical constraints makes a set of the MINLP optimization problem. In EES software. Optimization programming is performed using NSGA-II algorithm. Four optimization scenarios including the thermodynamic single-objective, the economic single-objective, environmental single-objective by power electricity consumption and multi-objective optimizations are performed. The output of the multi-objective optimization is a Pareto frontier that yields a set of optimal points that the final optimal solution has been selected using two decision-making approaches including the LINMAP and TOPSIS methods.. It was shown that the best results in comparison to the simple cycle reduction in Exergy destruction from 264.8 kW to 127.6 kW(Increased coefficient of performance from 3.872 to 7.088), reduction in cold water production cost from 117.5 dollar/hour to 87.19 dollar/hour and reduction in NOx emission from 4958 kg/year to 2645 kg/year. | ||
کلیدواژهها | ||
Compression Refrigeration Cycle؛ Multi-Objective Optimization؛ Genetic Algorithm (GA)؛ TOPSIS and LINMAP Decision-Making | ||
مراجع | ||
[1] Bejan A., Tsatsaronis G., Moran M., Thermal Design and Optimization, Journal Wiley (1996).
[2] Leidenfrost W., Lee K.H., Korenic K.H., Conservation of Energy Estimated by Second Law Analysis of Power-Consuming Process, Energy (1980) 5:47-61.
[3] Dincer I., Edin M., Ture E., Investigation of Thermal Performance of a Solar Powered Absorption Refrigeration System, Energy Conversation & Management (1996) 37 (1): 51-58.
[4] Meunier F., Poyelle F., LeVan M.D., Second-Law Analysis of Adsorptive Refrigeration Cycles, The Role of Thermal Coupling Entropy Production, Applied Thermal Engineering (1997)17 (1): 43-55.
[5] Nikolaidis C., Probert D., Exergy-Method Analysis of a Twostage Vapour-Compression Refrigeration-Plants Performance, Applied Energy (1998)60: 241-256.
[6] Bouronis M., Nogues M., Boer D., Coronas A., Industrial Heat Recovery by Absorption/Compression Heat Pump Using TFE-H2OTEGDME Working Mixture, Applied Thermal Engineering (2000)20: 355-369.
[7] Go¨ktun S., Yavuz H., Performance of Irreversible Combined Cycles for Cryogenic Refrigeration, Energy Conversation & Management (2000)41: 449-459.
[8] Chen J., Chen X., Wu C., Optimization of the Rate of Exergy Output of a Multistage Endoreversible Combined Refrigeration System, Exergy (2001)1 (2): 100-106.
[9] Kanoglu M., Exergy Analysis of the Multistage Cascade Refrigeration Cycle Used for Natural Gas Liquefaction, International Journal Energy Research (2002)26: 763-774.
[10] Yumrutas R., Kunduz M., Kanoglu M., Exergy Analysis of Vapour Compression Refrigeration Systems, Exergy International Journal (2002)2: 266-272.
[11] Kanoglu M., Carpınlıoglu M.O., Yıldırım M., Energy and Exergy Analyses of an Experimental Open-Cycle Desiccant Cooling System. Applied Thermal Engineering (2004) 24: 919-932.
[12]Kopac M., Zemher B., Effect of Saturation-Temperature on the Performance of a Vapour-Compression Refrigeration-Cycle Working on Different Refrigerants Using Exergy Method, International Journal Energy Research, (2006)30: 729-740.
[13]Ozgener O., Hepbasli A., A Review on the Energy and Exergy Analysis of Solar Assisted Heat Pump Systems, Renewable & Sustainable Energy Reviews (2007) 11: 482-496.
[14]Deb K., Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Incorporation, New York, NY, USA (2001) ISBN 047187339X.
[15]Dincer I., Edin M., Ture E., Investigation of Thermal Performance of a Solar Powered Absorption Refrigeration System, Energy Conversation & Management (1996)37 (1): 51-58.
[16]Sanaye S., Malekmohammadi H.R., Thermal and Economical Optimization of Air Conditioning Units with Vapor Compression Refrigeration Applied Thermal Engineering (2004)24: 1807-1825.
[17]Selbas R., Kızılkan O., Sencana A., Economic Optimization of Subcooled and Superheated Vapor Compression Refrigeration Cycle, Energy (2006)31: 2108-2128.
[18]Misra R.D., Sahoo P.K., Sahoo S., Gupta A., Thermoeconomic Optimization of a Single Effect Water/LiBr Vapour Absorption Refrigeration System, International Journal Refrigeration (2003)26 (2): 158-169.
[19]Sanaye S., Niroomand B., Thermal-Economic Modeling and Optimization of Vertical Ground-Coupled Heat Pump, Energy Conversation Management (2009)50, 1136-1147.
[20]Fonseca C.M., Fleming P.J., Multiobjective Optimization. In, Back T., Fogel D.B., Michalewicz Z. (Eds.), Handbook of Evolutionary Computation. Oxford University Press (1997).
[21]Van Veldhuizen D.A., Lamont G.B., Multiobjective Volutionary Algorithms, Analyzing the State-of-the-art, Evolutionary Computation (2000)8 (2): 125-147.
[22]Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, Incorporation New York, NY, USA (2001) ISBN 047187339X.
[23]Konak A., Coit D.W., Smith A.E., Multi-Objective Optimization Using Genetic Algorithms, A Tutorial Reliability Engineering and System Safety (2006) 91: 992-1007.
[24]Toffolo A., Lazzaretto A., Evolutionary Algorithms for Multi-Objective Energetic and Economic Optimization in Thermal System Design, Energy (2002)27: 549-567.
[25]Toffolo A., Lazzaretto A., Energy, Economy and Environment as Objectives in Multi-Criteria Optimization of Thermal System Design, Energy (2004)29: 1139-1157.
[26]Sayyaadi H., Amlashi E.H., Amidpour M., Multi-Objective Optimization of a Vertical Ground Source Heat Pump Using Evolutionary Algorithm. Energy Conversation Management (2009) 50: 2035-2046.
[27]Sayyaadi H., Amlashi E.H., Various Criteria in Optimization of a Geothermal Air Conditioning System with a Horizontal Ground Heat Exchanger, International Journal of Energy Research (2010) 34: 233-248.
[28]Sayyaadi H., Nejatolahi M., Multi-Objective Optimization of a Cooling Tower Assisted Vapor Compression Refrigeration System, International Journal of Refrigeration, International Journal of Refrigeration 34-1 (2010) 243-256.
[29]Yu P.L., Multiple-Criteria Decision Making, Concepts, Techniques, and Extensions, Plenum Press, New York (1985).
[30]Olson D.L., Decision Aids for Selection Problems, Springer, New York (1996).
[31]Coulson J.M., Richardson J.F., Chemical Engineering Design, Third Edition, Butterworth and Heinemann (1996) 6.
[32]Ludwing E.E., Applied Process Design for Chemical and Petrochemical Plants, Third Edition (1993)2.
[33]Valero A., CGAM Problem, Definition and Conventional Solution, Energy (1994)19: 268-279.
[34]Selbas R., Kızılkan O., Sencana A., Economic Optimization of Subcooled and Superheated Vapor Compression Refrigeration Cycle Energy (2006)31: 2108-2128.
[35]Iran Energy Balance Sheet.
[36]Fonseca C. M., Fleming P. J., Multiobjective Optimization. In, Back T., Fogel D. B., Michalewicz Z., Handbook of Evolutionary Computation, Oxford University Press (1997).
[37]Carvalho M.B., Ekel P. Ya, Martins C.A.P.S., Pereira J. G. Fuzzy Set-Based Multiobjective Allocation of Resources, Solution Algorithms and Applications, Nonlinear Analysis (2005) 63: 715 – 724. | ||
آمار تعداد مشاهده مقاله: 675 تعداد دریافت فایل اصل مقاله: 409 |