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Abstract 

In this paper the dynamic of a droplet on a surface with a hole is investigated under gravitational effect by using lattice 
Boltzmann method. Incompressible two-phase flow with high density ratio proposed by Lee is considered. Cahn’s 
theory is used to observe the wettability of the surface in contact with liquid and gas phases. Several parameters such 
as contact angle, surface tension and gravitational acceleration are studied to demonstrate their effects on the 
deformation of the droplet. To evaluate the results, the benchmark problems for equilibrium contact angle, capillary 
rise and Laplace law are conducted and a satisfactory agreement with analytical results is shown. Based on this study, 
four typical deformations of a droplet dripping down a hole can be observed; equilibrium drop on the top of the surface, 
equilibrium drop under the bottom of the surface, splashing and dripping of the drop. It is seen that at low Ohnesorge 
numbers the droplet deforms slightly and tends to retain its state. Moreover any increase in the Archimedes number 
magnifies the tendency to pass through the hole. Also, the relationship between the volume of the remaining droplet 
on the surface and Archimedes and Ohnesorge numbers is investigated. It is found that by increasing the Archimedes 
number, the volume of the remaining droplet on the surface reaches a constant value that is dependent on geometric 
parameters. 
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1. Introduction

In the recent years, lattice Boltzmann method has 
reached a great advancement for simulation of single 
and two-phase flow. Simple numerical coding and 
parallel processing on the one hand and possibility to 
simulate flow fields with complex boundaries on the 
other hand have encouraged most researchers to focus 
on this method more than the conventional CFD 
methods [1, 2]. Lattice Boltzmann simulations of two-

§ Corresponding anther Tell: +982161119930, Fax:+982188013029, Email: rahimyan@ut.ac.ir 

phase flows have been used since 1990 in many works 
[3, 4]. Recently two-phase flow solvers using lattice 
Boltzmann method have been extended to the motion 
and deformation of the drops and bubbles [5, 6], liquid 
evaporation and steam condensation [7-9], and liquid 
jet impinging to a stagnant gas [10]. 

Droplet collision with a solid surface plays an 
important role in many industrial processes such as in 
the refinery and petrochemical reactors, printers, 
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surface covering, internal combustion engines, filters 
etc. For this purpose, dynamics of the droplet impact 
on a solid surface has been investigated by many 
researchers. Yarin Al et al. [11] have investigated a 
droplet collision and spread process on a dry surface. 
In their work the difference between the dynamic of a 
single droplet impact to a dry surface is compare to that 
of a train of droplets. Morton et al. [12] and Mukherjee 
et al. [13] investigated a droplet spreading on wet 
surfaces with a thin liquid film. Sikalo et al. [14-16] 
experimentally investigated the impact of the droplet 
on various horizontal and inclined surfaces and studied 
the relationships between several parameters such as 
the diameter of the wetting area on the solid surface 
and time variations of the contact angle. Haghani et al. 
[17] investigated the droplet collision on a surface 
with a hole. They observed that the dynamics of the 
droplet depends on several parameters such as the 
dimensionless height and the width of the hole and the 
droplet properties. Lunkat et al. [18] investigated the 
droplet dynamic on horizontal and inclined surfaces by 
the volume of fluid method (VOF) and examined the 
effects of wettability and inclined angle on the 
diameter of wetted spot. In this work, droplet impact 
on a surface with a hole is investigated. Moreover, the 
effects of the contact angle, surface tension and 
gravitational acceleration on the dynamics of the 
droplet are evaluated. It is shown that four regimes are 
seen in a droplet dripping down a hole, first when the 
drop remains on the top of the surface, second when 
the drop remains under the bottom of the surface, third 
when the drop breaks up and finally when the drop 
drips completely down the hole. All of these four cases 
are discussed in versus non-dimensional parameters.  

2.   Lattice Boltzmann method 

In the lattice Boltzmann method, discrete Boltzmann 
equation with force term takes the following form 
[19]: 
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where F  is obtained by determining the non-ideal gas 
effects takes the following form [19]: 
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C  is the concentration parameter and 
1p  is the 

hydrodynamic pressure. External force (
e x tF ) in this 

work is the gravitational force and is calculated 
according to the following equation: 
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where g is the gravitational acceleration and the 
subscript g  donates the gas phase. The 
thermodynamic pressure (

0p ) is calculated from the 
Legendre equation 
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surface tension  and the interface thickness D . 
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Lee [20] used two distribution functions g and h  
for the pressure and composition evaluation equations, 
respectively  
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where M  is the mobility. The equilibrium distribution 
functions are given by 
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To facilitate the computation, the modified distribution 
functions g  and h  are applied:
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By taking second-order integration in time, the 
LBE for the pressure and composition equations are 

summarized as follow:
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Finally, the macroscopic variables can be 
calculated using the following equations:  
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The density and relaxation time are given by 
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where the subscripts of l  and g  donate liquid and 
gas phases, respectively.  

Based on the Cahn’s theory, the following 
boundary conditions are applied for presenting solid 
surface [21]: 
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where ( )eqcos  is the wetting potential.  

3.   Validation test 

3.1.   Laplace law 

According to the Laplace law the pressure difference 
across the interface of a static drop is related to the 
surface tension via 

(21),in outp p p
R

 
where R  is the radius of the drop at equilibrium. In 
order to verify the Laplace law, initially static drops 
with different radius are generated in the middle of the 
computational domain. The numerical results are 
compared with the theoretical solution (Eq. 21) in Fig. 
1. It can be seen that the numerical results are in 
satisfactory agreement with the theoretical values.  

 
Fig. 1 Verification of Laplace Law for three different values 

of surface tension 

3.2.    Partial wetting boundary 
To verify the numerical solution equilibrium contact 
angle, a droplet initiates moving to the surface with the 
different contact angles. The numerical equilibrium 
contact angle and the theoretical solution (

( )eqcos ) are compared in Fig. 2 in the range 
of contact angle from 1 0  to 170 . As it can be seen, 
the numerical results are in a good agreement with the 
theoretical values.  

4.   Drop dripping down a hole 

4.1.   Computational setup 

In this section, a drop dripping down a hole is  

  
Fig. 2: The simulated equilibrium contact angle vs. the 

theoretical solution  
considered. Fig. 3 is a schematic of this problem. A 
two dimensional liquid drop with a diameter of 
50lattice cells is generated tangent to the surface. A 
200×300 computational domain for a D2Q9 lattice is 
implemented. The boundary condition for solid surface 
is partial wetting boundary while periodic boundary 
condition is used in vertical and horizontal directions. 
The ratio of the wall thickness to the drop diameter (

*h h D ) and the hole diameter to the drop 

diameter (
*d d D ) are fixed 0.1 and 0.6, 

respectively. 

The results are presented in terms of Archimedes 
and Ohnesorge numbers based on drop properties. 
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where D  is the drop diameter, g  is the gravitational 

acceleration, d  is the density of the drop, and d  is 
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Fig. 3: Schematic representation of the domain

(23)Archimedes 
number 

3

d

gD
Ar

where D  is the drop diameter, g  is the gravitational 

acceleration, d  is the density of the drop, and d  is 
the dynamic viscosity of the drop.  

The dimensionless time is defined by, 

(24),
2

d Dt T 
where T is the number of iterations.  
 

4.2.   Mesh independency 

At first, the mesh independancy was performed for one 
case. As shown in Fig. 3, the shapes at two 
dimensionless times for two grids with 200 300  
and 400 600  lattice cells are in agreement with one 
another. Hence, in order to reduce computation time, a 
200 300  grid has been selected for computational 
domain. 

4.3.   Density ratio and dynamic viscosity ratio 

To study the effects of the density ratio, l g , and 

the dynamic viscosity ratio, l g , the properties of 
the drop are fixed and the density and dynamic 
viscosity of the gas phase are changed. The effects of 
the density and dynamic viscosity ratio on dynamic 
behavior of the drop are shown in Fig. 4a and Fig. 4b,  

  
Fig. 3: Grid independency at * 50t , * 80t  (

243.03Ar , 0.0133Oh , 60eq ) 
respectively. 

As shown in Fig. 4a, the effects of different density 
ratios of 100 and 500 at 260t  are not very 
significant on their shapes. However, at the density 
ratio of 10, the drop has a major difference at vertical 
position and its shape. It is known that the gravity force 
is proportional to the density difference, , 

assuming 1l
,  for the density ratios ( l g

) of 10, 100, 500 is respectively 0.9, 0.99 and 0.998. 
Thus, by increasing the density ratio, the gravity force 
tends to a constant number and a fixed deformation of 
the drop occurs. To investigate the effects of dynamic 
viscosity on the drop behavior, three dynamic viscosity 
ratios (10, 20 and 33.33) are evaluated. As shown in 
Fig. 4b, there is a little difference at dynamic viscosity 
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ratios of 20 and 33.33. When the dynamic viscosity 
ratio is large ( 33.33l g ), the resistance of the 
gas phase is low enough to allow great spreading of the 
drop on the surface. Thus, breakup of the drop occurs 
later and the drop has a higher vertical position than a 

drop with lower dynamic viscosity ratio. Also, the 
remaining droplet volume on the surface in this case is 
greater. Therefore, in the rest of the simulations, 

100l g  and 20l g  are selected to see 
the effects of other non-dimensional parameters. 

  
100l g(b),  0 .1l g(a),   

Fig. 4: Effects of (a) the density ratio (b) the dynamic viscosity for 237.17Ar , 0.0105Oh , 260t , 60eq   

4.4.    Shape and position evolution  

The dynamic behavior of a drop moving on a surface 
with a hole, is investigated in this section. Shape and 
deformation time of the drop from the initial state to 
the final state depend on the properties of the drop and 
surface. These properties include surface tension, 
equilibrium contact angle, density and viscosity ratios, 
and gravitational acceleration. Based on our numerical 
results, we find that for different Ohnesorge numbers, 
Archimedes numbers, and equilibrium contact angles, 
the dynamic behavior of the drop can be divided into 
four states; equilibrium on the top of the surface, 
equilibrium under the bottom of the surface, splashing 
and dripping. Results are shown in Fig. 6 for five 
equilibrium contact angles; 30eq , 6 0 , 9 0 , 
120 , 150 , and different Archimedes and Ohnesorge 
numbers.  

When the contact angle is equal to 30 degrees, the 
dynamics of the drop is divided into three types: 
equilibrium on the top of the surface (Region 1), 
equilibrium under the bottom of the surface (Region 2) 
and splashing (Region 3). While the Archimedes 
number increases, the gravitational acceleration 
increases and the drop has greater tendency to pass 
through the hole. Thus, at a constant Ohnesorge, by 
increasing the Archimedes number the drop behavior 
changes from region 1 to region 2 and then to region 3, 
respectively. By increasing the contact angle to 60 
degrees (Fig. 6b), a new region that is called the 
dripping region (Region 4) is seen and the equilibrium 

at the bottom of the surface (Region 2) is shrunk due 
to the reduction of the force between the drop and the 
surface. At 30eq , the drop is spread on the 
surface along the horizontal direction more than the 
other contact angles and due to this reason the surface 
tension overcomes the gravity. Thus, at the contact 
angle of 30 degrees, the dripping mode (Region 4) has 
not been observed.  

When the contact angle is equal to 90 degrees (Fig. 
6c), the equilibrium at the bottom of the surface, 
(Region 2), can be seen at low Ohnesorge numbers. As 
shown in Fig. 6c, the drop on the surface has contact 
angle of 90 degrees (Region 1). At contact angle of 
more than 9 0 , the surface is hydrophobic and region 
(2) will not be observed. Therefore, the dripping drop 
region (Region 4) is expanded. 

At 120eq (Fig. 6d), the remaining droplets 
on the surface that have velocity towards the center of 
the hole continue their motion and drop down the hole. 
So, we consider this region different from the 
splashing region with remaining droplets up the 
surface (Region 3). This is considered the splashing 
region with dripping drops (Region 5). At 150eq  
(Fig. 6e) as 120eq , region 5 is replaced by 
region 3. By increasing the contact angle from 120 
degrees to 150 degrees, the hydrophobic intensity 
increases and it appears to shrink the dripping zone 
(Region 4) and expand regions 1 and 5. A comparison 
between Fig. 6d and Fig. 6e confirms the validity of 
this statement. 
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60eq(b)  30eq(a)   

  
120eq(d)  90eq(c)   

  
150eq(e)  

Fig. 6: Dynamic behavior of the drop at different Archimedes and Ohnesorge numbers and, equilibrium contact angle (
).20l gand  100l g

4.5.   Volume of the remaining droplets on the 
surface 

The volume of the remaining droplets on the surface at 
60eq  for different Ohnesorge and Archimedes 

numbers is plotted in Fig. 7. *V is defined as ratio of 
the volume of the droplets remaining on the surface to 
the initial volume of the drop. 
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versus different Archimedes  VFig. 7: Variations of 

numbers at different Ohnesorge numbers.  
As shown in Fig. 7, at any constant Ohnesorge 

number, by increasing Archimedes number, the 
dimensionless volume, V , reaches a constant value. 
The dimensionless value for different Ohnesorge 
numbers is the same and it only depends on the ratio of 
the hole diameter to initial drop diameter, d d D
, that is approximately equal to 24.5 for 0 .6d D . 

By increasing Archimedes number, gravitational 
acceleration will be increased, thus a greater gravity 
force is applied to the drop and the velocity of its center 
increases. In this case, the drop does not have enough 
time to overcome the surface tension force, thus it will 
be divided into smaller droplets. With further increase 
in the Archimedes number, the effect of the drop 
velocity on V  is decreased and V  reaches a constant 
value. 

To study the influence of the dimensionless 
diameter of the hole on the dimensionless volume, 
Ohnesorge and Archimedes numbers are varied at 
different d . The results for different d s are shown 
in Fig. 8. By decreasing d , we observe that the 
dimensionless volume is increased due to the increase 
of the resistant force applied by the hole. Also, the 
dripping drop has a higher position in vertical direction 
at the same time. The slope of the lines at smaller d  
is higher than greater d  showing that the effect of d  
on V  can be weakened by increasing d . 

 
Fig. 8: Variations of V  versus the dimensionless diameter d  for different Archimedes and Ohnesorge numbers at 60eq

4.6.   Velocity field  

Finally, the streamlines inside and outside of the 
droplet are shown in Fig. 9. The streamlines are plotted 
form the point of view of the observer who moves with 
the average velocity of the drop. Note that the 
presented dimensionless times are in different values 
because a number of times is required for the drop to 
reach equal position at different Archimedes and 
Ohnesorge numbers. To investigate the effects of 
Ohnesorge number, Figs. 9a-d are compared. By 
increasing Ohnesorge number, the tendency of the 
drop for retaining its own state is reduced, and it passes 
through the hole with a greater velocity. Hence, the 

surrounding flow is less affected by the drop motion 
and the streamlines become more uniform. Also, at the 
same vertical position, the drop with greater 
Ohnesorge number has lower dimensionless time. In 
Fig. 9c, the drop decay at higher Ohnesorge number 
induces two vortices that are formed on the back side 
of the drop. Fig. 9d is plotted for zero surface tension 
that has great deformation and reaches the same 
position at lower dimensionless time ( * 0.018t ). 

The effects of Archimedes numbers are plotted in 
Figs 9b, 9e, and 9f at the same Ohnesorge number (

0.0133Oh ). At a lower Archimedes number (Fig. 
9e), consequently, lower gravitational acceleration, the 
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vertical velocity of the drop is low and the drop reaches 
the same position at higher t  ( 1 8 0t ) and the 
flow field at the back of the drop does not have any 
vortices. By increasing the Archimedes number to 

212.13 (Fig. 9b), two vortices are generated at the edge 
of the remaining droplets on the surface. At the highest 
Archimedes value (Fig. 9f), a pair of vortices is 
generated behind the drop and two relatively big 
vortex rings are created beside the drop.

 

   
*( ) 212.13, 0.0133, 120b Ar Oh t *( ) 212.13, 0.0105, 320a Ar Oh t  

   
*( ) 212.13, 1.000, 0.018d Ar Oh t *( ) 212.13, 0.0152, 80c Ar Oh t  

   
*( ) 243.03, 0.0133, 95f Ar Oh t *( ) 175.89, 0.0133, 180e Ar Oh t  

Fig. 9: streamlines inside and outside the dripping drop. The contours (shown in red) denote the interface 

5.   Conclusions 

A comprehensive study of drop dynamics on the 
surface with a hole was performed based on the lattice 
Boltzmann method. The effects of the contact angle, 
surface tension, gravitational acceleration, density 
ratio, viscosity ratio and geometric parameters were 
investigated in a 2D computational domain. It was 
shown that the dynamic viscosity ratio has more 
effects on the dynamics of the drop than the density 

ratio does. Based on the results, the dynamic of the 
drop was divided into four typical deformations. It was 
shown that by increasing the Archimedes number, the 
dimensionless time for reaching the same position is 
reduced. By increasing the Ohnesorge number, surface 
tension decreases resulting in higher deformation of 
the drop. The streamlines were plotted to display 
vortices around the drop. It was shown that the 
number, shape and size of the vortices are dependent 
on the Archimedes and Ohnesorge numbers. Also, the 



M. H. Rahimian et al. 

98 
 

ratio of the remaining drop volume on the surface to 
the initial volume were calculated, and it was presented 
that by increasing the Archimedes number, this ratio 
reaches a constant value that is dependent on the 
geometric parameters such as the ratio of the hole 
diameter to the initial drop diameter.  
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