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Abstract 

In the present study, modelling and vibration analysis of Carbon nanotubes/ fiber/ polymer composite microplates are 
investigated. The governing equations of the Carbon nanotubes/ fiber/ polymer composite microplates are derived 
based on first order shear deformation plate theory, rather than other plate theories, due to accuracy and simplicity of 
polynomial functions. The modified couple stress theory is employed because of its capability to interpret the size 
effect. Halpin-Tsai model is utilized to evaluate the material properties of two-phase composite consisted of uniformly 
distributed and randomly oriented Carbon nanotubes through the epoxy resin matrix. Afterwards, the structural 
properties of carbon nanotubes reinforced polymer matrix, which is assumed as a new matrix, and then, reinforced 
with E-Glass fiber, they are calculated by fiber micromechanics approach. Employing Hamilton’s principle, the 
equations of motion are obtained and solved by Hybrid analytical numerical method. The influences of various 
parameters such as the weight percentage of single-walled carbon nanotube, aspect ratio, and size effect on the 
vibration characteristics of microplate are discussed in details. Results indicate that the stability of Carbon 
nanotubes/fiber/polymer composite microplates can be improved by adding appropriate values of Carbon nanotubes. 
In addition, increase in the frequencies is more pronounced in the case of microplates reinforced with SWCNT 
compared with MWCNT. These findings can be used in design and manufacturing of marine vessels and aircrafts. 
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1.   Introduction 

Carbon nanotubes (CNTs) are molecular structures of 
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graphitic carbons with excellent and remarkable 
properties. The exceptional mechanical properties of 
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the CNTs, combined with their low density, offer 
scope for the development of nanotube reinforced 
composite materials. Due to their extraordinary 
specific stiffness and strength, the study of micro- and 
nano-composites reinforced with CNTs represent 
tremendous opportunity for researchers and 
industrialists. Therefore, the presence of the CNTs can 
improve the strength and stiffness of structures as well 
as electrical and thermal conductivities to composite 
systems. 

In micro- and nano-scale studies, it is important to 
consider the size effect. Due to lack of material length 
scale parameters, conventional plate models based on 
classical continuum theories do not consider the size 
effects, while the size effects have been observed [1-3] 
experimentally. Therefore, size-dependent plate 
models based on size-dependent continuum theories 
that contain additional material length scale 
parameters have been developed. Several size-
dependent continuum theories have been developed to 
account for the size effects, such as the classical couple 
stress theory (CCST) [4] and the nonlocal elasticity 
theory [5] with two material length scale parameters, 
and the strain gradient theory (SGT) [6] with three 
material length scale parameters. Considering the 
difficulties in determining material length scale 
parameters, the modified couple stress theory (MCST) 
[7] takes an advantage over the aforementioned size-
dependent continuum theories containing only one 
material length scale parameter. Also, MCST includes 
asymmetric couple stress tensor respect to CCST.  

Tsiatas’s investigation [8] can be noted as one of 
the first works that employed modified couple stress 
theory (MCST) for plate. He developed a Kirchhoff 
plate model based on a MCST for static analysis of 
microplates. Then, Yin et al. [9] and Jomehzadeh et al. 
[10] utilized this model to study the vibration of 
microplates. Asghari [11] studied geometrically 
nonlinear micro-plate formulation with Kirchhoff plate 
theory of isotropic plates. He presents the general form 
of boundary conditions considering the sharp corners. 
Also, Sahmani and Ansari [12] presented SGT for the 
free vibration of functionally graded (FG) micro-plates 
based on non-classical higher-order shear deformable 
plate model and Mori-Tanaka homogenization 
technique. They obtained that in the higher length scale 
parameters, the material property gradient index has 
more effects on the vibration behavior of FG micro 
plates for MCST and strain gradient theory (SGT) with 
respect to classical plate theory (CPT). 
Mohammadimehr et al. [13] presented the size-
dependent effect on the buckling and vibration analysis 
of double-bonded nanocomposite piezoelectric plate 
reinforced by boron nitride nanotube. Using MCST, 
they studied the effects of material length scale 

parameter, elastic foundation coefficients, and 
transverse and longitudinal wave numbers, etc. on the 
dimensionless natural frequency. 

Motivated by the aforementioned ideas, the 
vibration analysis of CNTs/ fiber/ polymer multiscale 
composite microplate is investigated in this study for 
the first time. Halpin-Tsai model and fiber 
micromechanics approach are used to determine the 
material properties of the multiscale composite plate. 
Also, first order shear deformation plate theory 
(FSDT) is selected for the displacement field. To 
consider the size effects, MCST are utilized to obtain 
strain energy. Finally, the equations of motion for 
microplate are derived based on Hamilton’s principle 
and solved by means of hybrid analytical numerical 
method for simply supported boundary conditions. 
Effects of various parameters such as the weight 
percentage of single-walled carbon nanotube, aspect 
ratio, and size effect on the dimensionless frequencies 
of microplates are investigated. The natural 
frequencies of plates are compared with the previous 
studies in literature to verify the presented research. 
The result of this work can be useful to control and 
improve the performance of composite devices which 
are employed in military equipment's. 

2.   Micromechanics modelling 

Consider a multiscale composite microplate composed 
of matrix ( m ) and fiber ( f ) phases. Note that matrix 
phase consists of CNTs and resin where CNTs were 
assumed to be uniformly distributed and randomly 
oriented through the matrix. To predict the material 
properties of multiscale composite, a combination of 
Halpin–Tsai model and micromechanics approach 
were used in hierarchy as shown in Figure 1. 

 
Fig. 1. A hierarchical configuration for modelling of three 

phase multiscale composite 

2.1.   Halpin–Tsai model 

The elastic properties of matrix phase can be 
calculated by a semi-empirical method. According to 
Halpin-Tsi model, the tensile modulus of matrix phase 
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can be expressed as [14, 15]: 
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where E , V , w , and  represent Young’s 
modulus, volume fraction, mass fraction, and density, 
respectively. Also, NTd , N Tl , and t  are diameter, 
length, and thickness of CNT, respectively. Hence, the 
subscripts NT  and epoxy  are related to CNT and the 
resin epoxy, respectively. Therefore, the shear 
modulus of matrix phase can be calculated by: 
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in which,  is Poisson ratio. 

2.2.   Micromechanics approach 

The elastic properties of the microplate can be 
determined by Micromechanics approach as follows 
[16]: 
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where 11E  and 22E  are longitudinal and transverse 

Young’s modulus, respectively. Also, 12G  is in plane 
shear modulus. 

3.   Fundamental relations 

As shown in Figure 2, consider rectangular microplate 
with length a, width b, and thickness h. The global 
coordinate system (x, y, and z axis) is located in mid-
plane so that the origin is at one corner of microplate. 
According to FSDT, displacement field of microplate 
can be expressed as follows [17]: 
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in which, u , v , and w  represent displacement 
through the x, y, and z axes, respectively. Also, x and 

y  are the rotational about x and y axes, respectively.  

 
Fig. 2. Schematic figure of CNTs/fiber/polymer multiscale 

composite microplate 

The linear strain relations can be described as: 
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in which,  and  are normal strains and shear strains, 
respectively, and sk  is shear correction factor. It 
should be noted that 0zz . Based on the Hook’s law, 
the constitutive equations can be expressed as: 
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p q ( , , ,p q x y z ) are stresses and rsQ ( , 1,2r s  and
44,55,66 ) are the material constants. Microplate is 
made of single orthotropic layer while reinforced by 
fibers. 1, 2, 6, 4, and 5 denote the local coordinate axes 
where 1 axis is along fibers direction, 2 axis is normal 
to fibers direction, and 6 axis is shown shear in-plain 
direction. Also, 4 and 5 represent shear out of plain 
directions. Therefore, the constitutive equations must 
be transformed to the global coordinates. So, the 
constitutive equations of multiscale composite can be 
rewritten as follows [16]. 
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where ijQ ( , 1,2,6i j  and 4,5 ) are given as: 
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in which, cosm  and sinn ( being the angle 
between global x axis and fiber axes). 

4.   Hamilton's principle 

Hamilton’s principle is employed to derive the motion 
equations as follows [18]: 
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in which, sU and K  represent strain energy and 
kinetic energy, respectively. MCST is used to derive 
equations of strain energy as [17]: 

1
2

1 ,
2

xx xx yy yy zz zz
s

V xy xy xz xz yz yz

xx xx yy yy zz zz

V xy xy xz xz yz yz

U dV

m m m
dV

m m m

 (11)

p q  is symmetric curvature tensor and pqm  is 
deviatory part of the couple stress tensor. Also, pqm  
is the stress which is palpable in the small scale and 
cannot be ignored and is defined as: 
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where 0l  and pije represent the material length scale 

parameter and alternate tensor, respectively. Also, G  
is equal to 6 6Q  in this paper. So, the symmetric 
curvature tensor can be rewritten by substituting Eq. 
(5) into Eq. (12c) as follows: 
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Substituting Eq. (5) into Eq. (8) and using Eqs. 
(11)-(13), strain energy can be obtained. Also, the 
kinetic energy of microplate can be determined by: 

2 2 21 .
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V
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Substituting Eq. (4) into Eq. (14), kinetic energy 
can be calculated. Now, using Hamilton’s principle 
and putting the coefficients of u , v , w , x , and 

y equal to zero, the motion equations are obtained. 
For the sake of brevity, these equations are not 
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presented here. 

5.   Solution Procedure 

In the case of simply supported microplate, the 
displacement components can be defined according to 
the Navier’s procedure, which automatically satisfy 
the boundary conditions at the microplate edges. Based 
on this procedure, the displacement components can be 
expressed in the following forms: 
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in which, 1i , 
m
a

, and 
n
b

. m and n 

show the wave or mode numbers along the x and y 
directions, respectively. Also, mnU , m nV , mnW , m nP
, and mnQ  are unknown coefficients of each mode 

numbers and mn  denotes the natural frequency. 
Inserting the displacement components from Eq. (15) 
into the motion equations, final relation is obtained as 
a matrix form: 
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for which, the components of matrix K have been 
mentioned in Appendix A. 

6.   Numerical results 

In this section, effects of various parameters such as 
weight percentage of single walled carbon nanotube 
(SWCNT), size effect, fibers orientation, aspect ratio, 
and thickness on the vibration characteristics of 
microplates are discussed in details. The values of the 
different parameters in this study were obtained 
according to Rafiee et al. [19].  

Figure 3 shows the weight percentage effect of 
SWCNT on dimensionless frequencies versus aspect 
ratio (a/b) of multiscale composite microplates. As can 
be seen, increasing aspect ratio of microplate leads to 
increase dimensionless frequencies of microplate. 

Also, increasing weight percentage of SWCNT leads 
to increase stiffness of microplate and consequently 
leads to improved dimensionless frequencies. 

 
Fig. 3. The weight percentage effect of SWCNT on 

dimensionless frequencies versus aspect ratio of microplate 

Figure 4 illustrates the dimensionless natural 
frequency versus aspect ratio of microplate in various 
aspect ratios (length-to-diameter) of CNTs. It can be 
found that increasing length-to-diameter ratio of CNTs 
causes the increase of dimensionless frequencies and it 
is because of the fact that internal structure of 
microplate are further strengthened. Dimensionless 
natural frequencies versus length-to-thickness ratio of 
microplate in various weight percentages of CNTs are 
studied and depicted in Figure 5. According to this 
figure, dimensionless frequencies of microplate are 
reduced by increasing length-to-thickness ratio (a/h) of 
microplate. It is obvious that a higher length-to-
thickness ratio which is related to thinner microplate 
has a lower stiffness. Moreover, SWCNT reinforced 
composite microplates indicate better resistance to 
reduced natural frequencies compared to multi-walled 
carbon nanotube (MWCNT) reinforced composite 
microplates.  

 
Fig. 4. The influence of SWCNTs aspect ratio on the 

dimensionless frequencies versus aspect ratio of microplate 
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Effect of CNT content on the dimensionless natural 
frequency under various fibers orientation is presented 
in Figure 6. Increasing volume fraction of CNT, 
dimensionless natural frequency decreases from 0  to

/ 4  radian and it increases from / 4  to / 2  radian. 
Therefore, the results of this figure can help in 
selecting an appropriate combination of volume 
fraction of CNT and fibers orientation in order to 
optimize the design of multiscale composite 
microplates.  

 
Fig. 5. Dimensionless natural frequency versus length-to-

thickness ratio of microplate in various weight percentages 
of CNTs 

 

Figure 7 shows the size effect on dimensionless 
natural frequencies in various aspect ratios of 
microplate. According to this, the results of MCST are 
as the same of CPT when the material lengths scale 
parameter is equal to zero. Also, MCST gives the 
higher natural frequencies respect to CPT. In addition, 
selecting a higher material lengths scale parameter 
causes increased dimensionless frequencies, 
approximately. 

In order to verify the reliability of the results, the 
comparison between the frequencies of isotropic 
microplate in the present study and the work which is 
done by Ke et al. [20] is performed. As can be seen in 
Figure 8, there is a good agreement between the results 
of present study and the work done by Ke et al. [20]. 

7.   Conclusion 

This paper develops the vibration analysis of 
CNTs/fiber/polymer multiscale composite microplates 
using MCST for the first time. To determine the 
material properties of the multiscale composite plate, 
Halpin-Tsai model and fiber micromechanics 
approach are employed. The motion equations for 
microplate are derived using FSDT and solved by 
means of Navier solution for simply supported  

 
Fig. 6. Effect of CNT content on the dimensionless natural 

frequency under various fibers orientation 

 
Fig. 7. The size effect on dimensionless natural frequencies 

in various aspect ratio of microplate 

 
Fig. 8. Comparison between the frequencies of isotropic 

microplate in the present study and the work which is done 
by Ke et al. [20] 
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SWCNT, aspect ratio of microplate, and length-to-
diameter ratio of CNTs. 

 Dimensionless frequencies of microplate are 
reduced by increasing length-to-thickness ratio of 
microplates. 

 Increase in the frequencies is more pronounced in 
the case of microplates reinforced with SWCNT 
compared with MWCNT. 

 The variation of fibers orientation up to / 4 radian 
leads to decrease in dimensionless natural 
frequency. The variation of fibers orientation more 
than / 4  radian leads to increase in dimensionless 
natural frequency. 

 MCST desires CPT while the material length scale 
parameter is equal to zero. Also, MCST gives the 
higher natural frequencies respect to CPT. 

8.   Appendix 

The components of matrix K can be obtained as 
follows: 
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= sin( x)cos( y) sin( x)cos( y) ,

= sin( x)sin( y) sin( x)sin( y) .

b a

b a

b a

b a

K dxdy

K dxdy

K dxdy

K dxdy

(A14)
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