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Abstract 

In this paper, a general elastoplastic-damage constitutive model considering the effect of strain rate has been developed. 
The derivation of this model has been cast into the irreversible thermodynamics with internal variables within the 
fundamentals of Continuum Damage Mechanics (CDM). The rate effect has been involved as an additional term into 
the plastic yield surface (dynamic plastic yield surface). Therefore, the plastic surface has been presented in the 
category of Consistency–type model in which the rate of state variables is considered as independent state variables. 
The damage has been assumed as a tensor type variable and based on the energy equivalence hypothesis the damage 
evolution has been developed. The proposed model has been validated for both rate-independent and rate-dependent 
deformation. For this manner, the generalized trapezoidal stress integration algorithm of the model has been explained 
and the model has been implemented into user-defined subroutines (UMAT and VUMAT) in the finite element 
program ABAQUS. The results of numerical simulation, statically and dynamically, have been compared to the 
experimental results of three aluminum and two steel alloys. Also, the results of simulation for shear and double-
notched tests have been compared to their experiments. By comparing the predicted results with experimental data, 
the capability and validity of the model have been verified. 
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1.   Introduction 

Plasticity theory itself cannot predict the softening 
effect in material behavior. Therefore, the theory of 
Continuum Damage Mechanics (CDM) has been 
coupled to the plasticity to describe this phenomenon. 
It is observed experimentally that the deformation 
response of material as well as damage evolution is 
influenced by strain-rate, temperature, history of 
loading, and stress [1-3]. The study of the dynamic 
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deformation and fracture of materials by taking into 
account the damage evolution has become one of the 
research frontiers, receiving more and more attention 
by scientists until now [4-6]. 

For the analysis of many rate-dependent processes 
such as metal forming, impact, crash, and others, 
various viscoplastic models have been developed. Two 
types of modeling have been widely used in order to 
account the viscoplastic behavior of materials: the 
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overstress (Perzyna)–type model [7, 8] and the 
Consistency–type model [9-14]. In the Perzyna–type 
model, a rate-independent yield function is used to 
describe the viscoplastic behavior of materials. The 
overstress effect in this model means that this yield 
function can become larger than zero. Using the 
overstress model, the consistency conditions are not 
fulfilled and the stress states outside the yield surface 
are allowed (c.f. [15]). The main problems of the 
overstress model have been discussed in Ref. [16]. In 
the Consistency–type model, the rates of state 
variables are considered as independent state variables 
and they are included in the yield function. Therefore, 
the time derivative of rate dependent yield function 
illustrates the viscoplastic behavior of materials. 

Coupling a damage model with Perzyna–type 
approach is widely used in the literature to describe the 
rate-dependent (viscous) damage behavior [17-22]. 
Heeres et al. [12] compared the elastic-viscoplastic 
characteristics of the Perzyna– and Consistency–type 
models regarding the viscoplastic multiplier. In the 
Perzyna–type model, the rate of viscoplastic multiplier 
is explicitly defined via an overstress function, while 
in the Consistency–type model it is governed by a non-
homogeneous differential equation. As they illustrated, 
the different responses during the stress reversals are 
the dissimilarities of these two models. Voyiadjis and 
Abed [23] proposed a coupled temperature and strain 
rate microstructure physically based yield function to 
derive a kinematical model for thermo-viscoplastic 
deformations of BCC metals. In their work, the 
viscoplastic multiplier is obtained using both the 
Consistency– and Perzyna–type viscoplasticity models 
and in the case of the Perzyna viscoplasticity model, 
the athermal yield function is employed instead of the 
static yield function.  

The lack of research on developing a viscous 
damage model to be consistent with irreversible 
thermodynamics is obvious. In this analogy, Saksala et 
al. [14] developed a constitutive model by combining 
continuum damage with embedded discontinuity for 
dynamic analyses of quasi-brittle failure phenomena. 
Their model involves a rate-dependent continuum 
damage with isotropic hardening formulated in the 
Consistency–type approach. 

The main objective of this paper is to propose a 
rate-dependent elastoplastic-damage model in the 
framework of continuum damage mechanics based on 
the Consistency–type approach. The effect of strain-
rate is introduced by an additional term involved into 
the plastic yield surface. This implies that the proposed 
model is formulated in the Consistency–type approach. 
Appropriate thermodynamically consistent internal 
variables are identified. For numerical purposes, the 
generalized trapezoidal algorithm of the model is 
presented. In addition, in order to verify the capability 
of the model, the model is implemented as a user-
defined subroutine UMAT/VUMAT in the finite 
element program ABAQUS and the simulation results 
are compared with the experiment data. 

2.   Constitutive model 

2.1.   Thermodynamic conjugates  

In the concept of damage mechanics, the effective 
stress tensor  is assumed to be: 

D :  (1) 
where ( )D  is a fourth-order symmetric tensor which 
denotes the damage effect tensor [24]. This tensor has 
the following form within the Voight notation:

 
1 2 3 2 3 3 1 1 2

1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

( ) diagonal D D D D D D D D D
D (2) 

where 1D , . 2D . and 3D  are principal values of 
damage tensor D . Based on the rules of irreversible 
thermodynamics, the thermodynamic forces 
conjugated to the thermodynamic variables can be 
defined as: 
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where Y  is the damage energy release rate, h  

represents the isotropic hardening for plastic 
deformation and hY  is treated as isotropic hardening 
for damage evolution. r is the effective plastic strain 
and  is the accumulated damage. The sound elastic 

stiffness tensor, e0 , is considered as:  

e0 e02 s
ijkl

ik jl il jk ij kl

I I
 (4) 

with s and I  as the symmetric identity tensors of 
fourth- and second-order, and ,  as the Lamé 
constants which are related to Young’s modulus E  
and Poisson’s ration . Using the hypothesis of 
normal dissipation, the evolution equations of the 
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internal variables can be obtained as: 

p p
p p p

d d
d d
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,
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r

D
Y

 (5) 

where pf  and df  are limiting functions which 
denote respectively the plastic and damage dissipation 

potentials (yield surfaces), and, p  and d  are two 
positive variables known as the plastic and damage 
multipliers. 

2.2.   Yield criteria  

2.2.1.   Damage surface  

The damage yield surface determines the possibility of 
damage propagation. The following relationship for 
the damage yield criterion is a modified version of [25] 
adopted in this paper: 

1/
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where L is a second-order positive damage 
characteristic tensor describing the damage induced 

change in the damage surface. The parameter 0Y  in 
equation (6) is a material constant used to specify the 
size of the initial damage surface. The evolution law 
for damage is characterized as: 

d
d d d

d
d d

h

f

f
Y

D N
Y  (7) 

In addition, the following Kuhn-Tucker relations 
control the damage evolution: 

d d d d00 0f f, ,  (8) 

The unit tensor dN , which is normal to the damage 
surface, describes the direction of damage propagation 
as: 

d
2N L : Y
Y

 (9) 

where L is the characteristic tensor defined here as: 

d d
d

1 exp( ) exp( )
2 1 e
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1

r r
rL  (10) 

with d  as a material constant which can be calibrated 
using experimental data. 

2.2.2.   Plastic surface 

The plastic yield criterion can be treated as a condition, 
which enables whether the plastic deformation occurs 
or only the elastic one happens. In this work, we 
developed a static/dynamic plastic yield function for 
rate-independent/dependent deformations, 
respectively. This yield criterion is defined as: 

/
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where 0 is the initial strain hardening threshold and 

the positive definite tensor  for orthotropic 
materials is represented by a 6×6 matrix in the material 
principal coordinate system as: 

2 1 1 0 0 0
2 1 0 0 0

2 0 0 0
6 0 0

6 0
sym s 6

 (12) 

The dependency of plastic yield function on the 

strain rate has been involved by the term ,h rr  in 
equation (11). For the rate-independent plasticity, the 

term ,h rr  is reduced to h r  as referred in 
equation (3)3. In rate-dependent plasticity concept, the 
behavior of BCC and FCC type materials is different. 

Therefore, the form of term ,h rr  is different for 
FCC and BCC materials [26-28]. Here, we adopted 

,h rr  as: 

0

0

0

0

, /

, /

c
hBBC h

c
hFCC h

rr r r r

rr r r r
 (13) 

where r is the plastic strain-rate, 0r is a lower bound 
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strain-rate and c  is the strain-rate sensitivity 
parameter. Substituting yield function (11) into (5) 

yields the plastic strain increment p and the 
increment of isotropic hardening variable r as 
follows: 

p
p p p p

p
p p

h

f

r f

N
 (14) 

where the second-order tensor pN  is the normal 
direction to the plastic yield surface: 

p
2

T
N :  (15) 

The plastic yield surface, equation (11), should 
also satisfy the following Kuhn-Tucker 
loading/unloading conditions: 

p p p p00 0f f, ,  (16) 

3.   Stress update algorithm 

The constitutive equations described in the previous 
sections are summarized as: 
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 (17) 
The aim of integration algorithm is that using the 

input data p, , ,, , ,{ }n n n nn n n r rD  at time nt  and 
applying the strain increment , the variables 

p
1 1 1 1 1 1 1{ , , , }, , ,n n n n n n nr rD  are 

obtained by satisfying the loading-unloading 

conditions at time 1nt . In what follows, we represent 
the generalized trapezoidal scheme algorithm of the 
proposed model. 

3.1.   Generalized trapezoidal scheme 

The proposed constitutive equations are integrated 
using a generalized trapezoidal integration algorithm. 
At this algorithm, the plastic strain increment and the 
increment of internal variables are calculated at the end 
time, i.e., 1nt . During this calculation, the 
satisfaction of either/both plastic and damage surfaces 
is established. Therefore, the integration algorithm is 
written as: 
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where by 0 1, the normal directions to the plastic 
and damage surfaces are determined as a weighted 
average of them at the beginning and end of the step: 

1(1 )n n nN N N . Clearly, the fully 
explicit Euler forward method is retrieved when 0
, while the implicit Euler backward method is obtained 
for 1. The nonlinear equations of (18) are solved 
for the parameters with subscript 1n . The equation 
(18)2 can be rewritten in the following form: 

p p p pp
1 1 1n n n n nN  (19) 

Substituting this equation into (18)7, we will have: 

pe
1 e 1 1n n n nD (20) 

If we write e 1nD  as e( 1)n , equation (20) 

is simplified to: 

p1 e
e( 1) 1 1n n n n  (21) 

Double contracting both sides of equation (21) at 
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e( )n  yields: 

p1 trial
e( ) e( 1) 1 1 e( ) 1n n n n n n  (22) 

where trial
1 e( )n n n  is the trial stress. In 

the integration of the model, a return-mapping 
algorithm involving the elastic predictor and 
plastic/damage corrector is used. During the 
plastic/damage corrector, the total strain is constant 
and linearization is established based on the increment 

of p  and d . 

3.1.1.   Linearization 

Subsequently, we neglect the subscript 1n  for 
simplicity. The equations (18) are as consistent with 
the Newton-Raphson method: 
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Linearizing equations (23) yields 
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where p d/ 0f  is exploited in equation (25). The superscript k  denotes the iteration counter 
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In what follows, we write all equations in the 
matrix-vector format. Substituting equations (26) into 
(24), the resultant equations can be written in the 
matrix form as: 

in numerical algorithm. Focusing on equations (24)
, the partial derivatives observed in these two equations 

are obtained as: 

( )
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Solving equation (27) for the increments of stress 

and damage gives: 
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Also, equations (25) in the matrix format yields: 
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So by substituting equation (29) into (30), and solving that for ( )k  we will have:

 ( ) ( ) ( ) ( ) ( ) (( ) ( )) )1 (k k k kk k k k kf f f fD DA A rN  (32) 

Now, as the ( )k  was calculated, the values of 

( ) ( )k kD  can be obtained from equation (29). 

Therefore, other internal variables are updated at the 
end of time step as follows:
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The iterations are repeated until the criterion 
( 1)norm kf tol is established. 

3.1.2.   The algorithmic tangent modulus 

In the implicit numerical methods, a suitable tangent 
modulus of the proposed algorithm is required for the 
fast convergent. This modulus is defined as: 

alg
1n

d
d

 (34) 

For obtaining an expression for the tangent 
modulus, the increment form of equations (18) at time 

1nt  will be:
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By substituting (35)2 into (35)1 and employing (35)
3, we arrive at: 

( )d d
d

dA A N
D 0

 (36) 

In addition, by replacing equation (36) into (35)4 

and (35)5, and solving them for p( )d  and d( )d
, we get:

 

 
p

d
1( )

( )d

d
f

d
f f D DAN A

0
 (37) 

By substituting this result into (36) we have:

 
1d d

f f f
d D DA AN AN A
D 0

 (38) 

Equation (38), in fact, represents a relationship for 
algorithm tangent modulus of stress and damage 
tensors. The algorithm tangent modulus defined in (34) 
can be simply extracted from equation (38). 

4.   Model validation 

4.1.   Rate-independent plasticity 

The rate-independent form of the proposed model is 

achieved when the coefficient 0( / )cr r  in the plastic 
yield surface is omitted. This purpose can be fulfilled 
by putting c as zero. In order to show the capability 
of the proposed model, the results of numerical 
simulation are compared to some published 
experimental data. The experimental results of three 

aluminum and two steel alloys are chosen for this 
comparison. The material parameters of these 
materials are presented in Table . Only aluminum 
Al2024-T3 [29, 30] has data for 2D  and 1D , so the 

parameter d  can be calculated only for this material. 
Fig. 1 shows the comparison of the numerical results 
with those experiments in stress and damage data for 
these materials. Fig. 1 shows that the damage variation 
may be different by the materials. These differences 
are specifically noticeable in the damage-strain curves. 
This model has properly predicted the stress-strain as 
well as the damage-strain curves of different materials. 
Based on Fig. 1, there are good agreements between 
simulation results and experimental data in both stress 
and damage data.

 

Table 1. The material parameters used in the model. 

  (GPa)E 0(M Pa) (M Pa)K n 0(M Pa)Y d(M Pa)K dm d c

Al2024-T3 [30] 353 70 325 950 0.68 1.42 14.5 2.5 3.13 0.0053

Al2024-T3 [29] 0.33 74.5 345 1200 0.7 1.51 45 4.5 13.2 — 

A2017 [31] 0.33 72.4 270 1200 0.7 0.65 30 0.5 — — 

Steel 1045 [32] 0.3 200 302 750 0.55 1.81 138 -12 — 0.06

Steel XC48 [31] 0.3 200 400 2300 0.95 1.04 20 3 — — 



M. Ganjiani  
 

18 
 

 

 

0

100

200

300

400

500

600

0 0.05 0.1 0.15 0.2 0.25

S
tr

es
s 

 (
M

Pa
)

Strain

Experiment

Simulation

(a) Al2024-T3 (Ganjiani, 2013)

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

S
tr

es
s 

(M
Pa

)

Strain

Experiment

Simulation

(a) Al2024-T3 (Chow and Wang, 1987)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

D
am

ag
e

Strain

Experiment D1

Experiment D2

Simulation D1

Simulation D2

(b) Al2024-T3 (Chow and Wang, 1987)



Vol. 47, No. 1, June 2016 

19 
 

 
Fig. 1. (Continued) Comparison between the predicted results with experimental data via (a) stress-strain and (b) damage-strain 

curves for aluminum 2024-T3 [29, 30], aluminum A2017 [31], steel 1045 [32] and steelXC48 [31].

The shear test was conducted to verify the results 
of numerical simulation. The material used was 
aluminum alloy, 2024-T3 [30]. The shear specimen 
was designed based on the standard ASTM B831-93 

shown in Fig. 2 with 3.2 mm thickness. The specimen 
was stretched with the velocity of 5 mm/min so that the 
tests can be considered as quasi-static.

 
Fig. 2. The specimen of shear test (dimensions are in millimeter). 

The results of shear test were compared 
numerically with experiment. Therefore, the model 
was implemented as a user-de ned subroutine UMAT 
in the ABAQUS/Standard nite element program. The 

distribution of von-Mises stress, effective plastic strain 
and accumulated damage as well as a view of fracture 
specimen are shown in Fig. 3. These curves show that 
where the maximum plastic strains occur, the 
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accumulated damage has also maximum value. From 
this, it can be inferred that the damage may be related 
to the plastic strain.  

Furthermore, for investigating the capability of 
model and validating the results, the predicted 
numerically load-displacement curve is shown in Fig. 
4. The load at any time is calculated by summing nodes 
loads in a cross section far from the shear region. The 
figure shows a satisfactory agreement between 
experimental and numerical data.  

4.1.1.   Rate-dependent plasticity 

The simulation results on steel 1045 as a BCC material 
are compared with experiments in uniaxial 
tensile/compressive tests. Fig. 5a shows the results of 
stress-strain curve in two different strain rates. At low 
strain rate (quasi-static), the experiments of tensile test 
after [32] are adopted and at high strain rate, the results 
of compressive test following [33] are chosen. 
Furthermore, the predicted damage data are compared 
with those of experiments in Fig. 5b. It is noted that 
there are no damage data for steel 1045 at high strain 
rate. These comparisons show a good agreement 
between simulations and experiments.

 

 
Fig. 3. Deformed shear specimen of aluminum 2024-T3. Distribution of: (a) stress (b) plastic strain (c) damage and (d) 

experiment. 

 
Fig. 4. load-displacement curve of shear specimen. 
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Fig. 5. Behavior curves of steel 1045 at low [32] and high [33] strain rates: (a) stress-strain, (b) damage-strain.

 

The double-notched test was conducted to probe 
the propagation of crack path. The double-notched 
specimen with its dimensions are shown in Fig. 6 with 
the thickness of 3.2 mm. The specimen was stretched 
with two different stain-rates, and subsequently, load 
and displacement history for subsequent analysis were 
recorded.  

 
Fig. 6. Geometry and dimension of double-notched 

specimen (mm) with 3.2 mm thickness.  

In order to capture the growth of damage in 
simulation, we need to enable the element deletion flag 
which can only be used in the explicit simulation. 
Therefore, the double-notched test is simulated by 
implementing the proposed constitutive model in the 
finite element program ABAQUS/Explicit via a user’s 
material subroutine coded as VUMAT. Two types of 
mesh refinements, coarse and fine, are used, shown in 
Fig. 7. 

The crack propagation path for these different 
mesh refinements are shown in Fig. 8a and Fig. 8b 
while the fractured specimen is plotted in Fig. 8c. 
According to the results shown in Fig. 8, the path of 
crack growth is suitably predicted by two mesh 
refinement schemes. Furthermore, the load-

displacement curve of the specimen is shown in Fig. 9. 
Although there is a slight deviation between the load-
displacement curves with respect to two levels of mesh 
refinement, the predicted numerical results are in good 
agreement with those obtained experimentally. 

 

   

 
Fig. 7. Two mesh refinement types of the double-notched 

specimen: (a) coarse, (b) fine.
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Fig. 8. Crack path in deformed double-notched specimen of Al2024-T3: (a) coarse mesh, (b) fine mesh, (c) experiment 

 
Fig. 9. Load-displacement curve in double-notched test. 

5.   Conclusions 

In this paper, a rate-dependent damage model has been 
presented in the framework of Continuum Damage 
Mechanics and Consistency approach. The model has 
been presented based on the irreversible 
thermodynamics with internal variables. In this regard, 
two plastic and damage surfaces have been defined to 
distinguish the plastic deformation and the damage 
growth. The plastic yield surface is presented in the 

category of Consistency–type model in which the rate 
of state variables is considered as independent state 
variables. The proposed constitutive equations have 
been integrated using generalized trapezoidal 
algorithm. The algorithm has been employed for 
simulating the static/dynamic loadings via the 
implementation of the model as a user-defined 
subroutine UMAT/VUMAT in the ABAQUS finite 
element program. In order to validate the model, the 
predicted curves of stress-strain and damage-strain for 
some materials are compared with those of 
experiments. Furthermore, the simulation of the shear 
test, statically, and double-notched test, dynamically, 
are compared with experimental results. The excellent 
agreement between the data exhibits the verification of 
the model. 
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