Sorption of Methaneand Carbon Dioxideon Nano Porous Zinc Carboxylate Metal-Organic Framework

Anbia, M.* and Pazoki, H.

Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, Tehran 16846-13114,Iran

Received 7 Sep. 2015;	Revised 19 Feb. 2016;	Accepted 24 Feb. 2016

ABSTRACT: Zinc (II) tricarboxylate(Zn-BTC)with metal-organic framework (MOF) has been synthesized forthe first time under solvothermalconditions andhas been tested as an adsorbent for methane and carbon dioxide at standard temperature and pressure. The adsorbent was characterized by means of X-ray diffraction(XRD),Brunauer-Emmet-Teller (BET), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM). Sorption capacity of the methane and carbon dioxide onZn-BTC in the range of pressure 1-20 bar and at 298Kwas investigated by volumetric measurement. This resultshow that Zn-BTC has higher sorption capacity methaneat 20 bar compared to carbon dioxide. The high sorption capacity of this adsorbent for methaneis attributed to large number of open metal site and the appropriate pore diameter of frameworkthat caused higher interaction for the methane at between methaneand carbon dioxide, suggests that (Zn-BTC) is a potential adsorbent for the separation of methane from gas mixtures.

Key word: Methane, Metal organic framework, Carbon dioxide, Adsorption, Solvothermal

INTRODUCTION

Methaneisavailable inlarge quantities and preferable to other hydrocarbon fuels because this gas hasthe highest hydrogen/carbon ratio and higher octane number than other fuels also it is the essential component of natural gas. Therefore this is a clean fuel and is used in transport and power plants to generate electricity(Wu et al., 2010; Konstas et al., 2012). The main problem is the ability tostoremethane at ambient temperature. It cannot beconverted to liquid phase by applying pressure onlybecause the critical temperature of methane is low(191 K). The methane usually is stored as compressed natural gas (CNG) at 207bar in vessels(J. J.Wozniak, 1995), moreover methane is stored in a porous solid at ambient pressure as adsorbent (ANG) (Rodgers, 2000). Carbon dioxide is a trace gas comprising 0.039% of the atmosphere that results from the burning of fossil fuels in automobiles and plants(Lee et al., 2006). Threetypes of gas mixtures are more important for separation and in capture technologies: the components of natural gas (CH4/CO2), fuel gases (CO2/N2) and pre-combustion gas mixture that contains H2(Hedin et al., 2010). The efficient storage of CH4 is one of the main problems for its widespread application. Accordingly, the development of more efficient approaches for CO2 capture and CH4 storage is critically important. Since year 2000, the United

State of America, department of energy (DOE) has set the target for adsorbent of methane, storage at 180 cm3 (STP)/cm3 at 298 K and 35 at bar (the standard temperature and pressure (STP) equivalent volume of methane per volume of the adsorbent material at temperature 298 K and pressure 1-35 bar.) (Min Wang et al., 2002; Ma et al., 2008).Recently porous metal-organic framework (MOFs) compounds have been used indrug delivery(Horcajada et al., 2006; Ferey. 2008)gasstorage(Anbia & Hoseini, 2012; Anbia & Hoseini, 2012; Anbia et al., 2012; Anbia & Sheykhi, 2012; Anbia & Sheykhi, 2013)separation(Ma et al., 2007), catalysts(Farrusseng et al., 2009; Lee et al., 2009), sensor technology(Beauvais et al., 2000; Halder et al., 2002). These compounds are formed of cluster and rigid organic linker that have one, two or three dimension structure. For the first time, in 1997, the compound with formula [Co2(4,4 bpi)3 (NO3)4·4H2O]n used as adsorbent for methane that showed gravimetric methane adsorption of 52 cm3 (STP)/g at 298 K and 30 bar(Kondo et al., 1997). The high surface area, high porosity and high volume are appropriate properties of MOFs. These properties can be changed with changing conditions (Kim et al., 2012). Thesolvothermal, hydrothermal(Anbia & Sheykhi, 2012), at room temperature(Tranchemontagne et al., 2008), microwave

^{*}Corresponding author E-mail: anbia@iust.ac.ir

radiation(Lu et al., 2010)and ultrasonic irradiation(Son et al., 2008) are different methods of synthesis for MOFs. In this study, we have synthesized Zinc (II) tricarboxylatesunder solvothermal conditionswith increased yield. The adsorption measurements of methane and carbon dioxide on Zn-BTC have been studied at 298 K up to 20 bars. This framework has shown highercapacity for sorptionof methaneat 20 barpressure Compared with CO2. The potential use of Zn-BTC as an adsorbent for separation of CH4 from gas mixtures is discussed.

MATERIALS & METHODS

Benzenetricarboxylic acid (H3BTC) (Merck, >98%), Ethanol (Merck, 99.9%) and Zn (NO3)2·6H2O (Merck) were obtained from E. Merck(Germany) and used without purification.

For synthesis of MOF, first benzene tricarboxylic acid ((H3BTC)) (0.315 g, 0.150 mmol) and zinc (II) nitrate hexahydrate (0.90 g, 9.00 mmol) were transfered to 30 ml of absolute ethanol, then for several minutes this mixture was stirred until completelydissolved and the solution was added to a Teflon-lined steel autoclave, and the temperature was set at 393 K for 12h. The white solid product was recovered by filtration, washed with ethanol and dried at room temperature.

The structure of (Zn-BTC)was identifed by X-ray diffraction on a Philips 1830 diffractmeter with Cu-K_{α} radiation source. Fourier transform infrared (FT-IR) spectrum of the adsorbent was recorded at room temperature on a DIGILAB FTS 7000 spectrometer equipped with an attenuated total reflection (ATR) cell. Thermo gravimetric analysis was used to determine the thermal stability of the material which was carried out from room temperature to 350 °Cusinga TGA/DTA (Mettler Toledo 851) analyzer at a heating rate of 5 °C/min under air atmosphere. SEM (PHILIPS XL30) was used to study the product morphology.

To investigate the adsorption capacity of (Zn-BTC) for methane, we have used the volumetric method and a setup as shown in Fig. 1. At ?rst, 0.5 g of a sample was loaded in the adsorption reactor (HP vessel) and attached to the system. Then, the existing gas inside the system was swept out with helium. To degas the system, we opened the valves 3 and 4 and closed other valves, then turned on the vacuum pump and the system was vacuumed at the heating temperature of 473 K for 1.5 h. After degassing, it was cooled to ambient temperature. The test gas was absorbed by opening the valves 2 and 3 and closing all other valves. The pressure of HP vessel decreased due to some dead volume in reactor (including hollow space and the connected tubes) and some adsorption. By measuring the dead volumes, one can calculate the exact pressure decrease because of methane adsorption.

Fig.1. Setup for adsorption capacity test

RESULTS & DISCUSSION

FT-IR spectrum of (Zn-BTC) is shown in Fig. 2.It exhibits vibration bands in the region of Benzenetricarboxylic acid (1552 and 1435 1/cm), a hydrogen-bonded water and ethanol (3400 and 31941/ cm), and nitrate (1377-15771/cm). Also it shows no absorptions for any protonated BTC (1730-1690 1/cm), indicating the complete deprotonation of Benzenetricarboxylic acidunder synthesis conditions.

Fig.2. FT-IR spectrum of (Zn-BTC)

The powder X-ray diffraction pattern (XRD) of (Zn-BTC) is shown in Fig. 3. The location of peaks (such as; 20:10.12) refers to patternof MOF that had been synthesized under room temperature conditions(Yaghi *et al.*, 1997). This confirms that (Zn-BTC) has been synthesized. The absence of peaks due to BTC and Cu (NO₃).6H₂O in the XRD pattern of (Zn-BTC) suggests its removal from the cavities of MOF.

Scanning electron microscope (SEM) image of (Zn-BTC) is shown in Fig. 4. As can be seen in the image of metal-organic framework synthesized, that it has spherical morphology. As shown in Fig. 5, the morphology of (Zn-BTC) was homogeneous.

The N_2 adsorption–desorption isotherms is used to determine the specific surface area and pore diameter of (Zn-BTC). The N_2 adsorption and desorption isotherm of the adsorbent is shown in Fig. 5. The isotherm of the (Zn-BTC) is of type I that confirm (Zn-BTC) is microporous compound. The (Zn-BTC) showed BET surface area of 120.225 m²/g and pore volume of 0.5406 cm³/g. Fig. 6 shows the pore size distribution of (Zn-BTC). The pore distribution of the adsorbent is 2.71 nm.

The adsorption isotherm of CH_4 and CO_2 on (Zn-BTC) at ambient temperature (298 K) and different pressures in the range of 0"20 bar is shown in Fig. 7. (Zn-BTC) shows the CH_4 and CO_2 adsorption capacities of 5.296 and 2.79mmole/g at 20 bar and 298 K respectively. The adsorption isotherm of CH_4 and

CO₂on this MOF at 298 K follows the type a! isotherm, characteristic of microporous solids.

The highsorption capacity of (Zn-BTC)is attributed to the large number of open metal sites caused by removal of the ethanol fromstructure. It is executable via heating the HP vessel of the adsorption setup.Also pore diameter of the MOF caused higher interaction between CH₄ and adsorbent compared with CO₂because the kinetic diameter of the methane is higher.Sorption capacity of the methane by porousmaterials such as MOFs has a strong correlation with the surface area, poresize and pore volume. Surface area is less strongly correlated with methane uptake(Llewellyn & Maurin, 2005)but pore size and pore volume are effective in interaction between MOF and CH₄(C. E. Wilmer, 2012) Open metal site is drastic in sorption of the methane. Sorption capacity of the methane not increases by interchange of the chemical composition of metal organic frameworks(Zhou et al., 2007). Comparison of CH₄ adsorption capacities of (Zn-BTC) and other porous materials are shown in Table1.

Fig.4. SEM image of (Zn-BTC)

Fig.5. N₂ adsorption–desorption isotherms of (Zn-BTC)

Gas adsorptionwith MOF

Fig.7. CH₄ and CO₂ adsorption capacity of (Zn-BTC) at different pressures and at 298 K

at 290 K		
Samples	CH ₄ adsorption capacity(mmole/g)	Reference
MIL-101 $Cr_3FO(bdc)_3$	14.2 (125 bar)	(Senkovska & Kaskel, 2008)
PCN-11 Cu ₂ (sbtc)	14.1 (35 bar)	(Wang <i>et al.</i> , 2008)
MIL-53(Cr) Cr(OH)(bdc)	10.2 (35 bar)	(Bourrelly et al., 2005)
Co ₂ (4,4-bipy) ₃ (NO ₃)	3.6 (30.4 bar)	(Kondo et al., 1997)
Zn ₄ O(R ₆ -bdc) ₃ IRMOF-6	4.7 (36.5 bar)	(Hofman et al., 2002)
$CuSiF_6(4,4-bip y)_2$	9.4 (36.5 bar)	(Noro et al., 2000)
MCM-41	4.06 (18 bar)	(Yun et al., 2002)
$Cu_2(pzdc)_2(pia)$	3.9 (31.4 bar)	(Kondo et al., 1999)
Zn-BTC	5.29(20 bar)	This work

Table 1. Comparison of CH₄ adsorption capacity of (Zn-BTC) with other adsorbents at different pressures and at 208 K

CONCLUSIONS

Zinc metal organic framework synthesized by solvothermal method shows high yield and has been used as an adsorbent for gas adsorption studies. This MOF has been characterized by FT-R,XRD, SEM and BET. Zn-BTC adsorbedthe methane 5.29mmole/gwhich is higher compared sorption of the carbon dioxide. High sorption capacity of this adsorbent for methane is due to pen metal sites created by removal of ethanol from the structure creating appropriate pore diameter.

REFERENCES

Anbia, M. and Hoseini, V. (2012). Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chemical Engineering Journal, **191**(0), 326-330.

Anbia, M. and Hoseini,V. (2012). Enhancement of CO_2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification. Journal of Natural Gas Chemistry, **21**(3), 339-343.

Anbia, M., Hoseini, V. and Sheykhi, S. (2012). Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235). Journal of Industrial and Engineering Chemistry, **18**(3), 1149-1152.

Anbia, M. and Sheykhi,S. (2012). Synthesis of nanoporous copper terephthalate [MIL-53(Cu)] as a novel methanestorage adsorbent. Journal of Natural Gas Chemistry, **21**(6), 680-684.

Anbia, M. and Sheykhi,S. (2013). Preparation of multiwalled carbon nanotube incorporated MIL-53-Cu composite metal–organic framework with enhanced methane sorption. Journal of Industrial and Engineering Chemistry, **19**(5), 1583-1586.

Beauvais, L. G., Shores, M. P. and Long, J. R. (2000). Cyano-Bridged $\text{Re}_6 Q_8$ (Q = S, Se) Cluster-Cobalt(II) Framework materials: versatile solid chemical sensors. Journal of the American Chemical Society, **122**(12), 2763-2772.

Bourrelly, S., Llewellyn, P. L., Serre, C., Millange, F., Loiseau, T. and Férey, G. (2005). Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. Journal of the American Chemical Society, **127(39)**, 13519-13521.

Wilmer, C. E., Michael, L., Lee, C. Y., Farha, O. K., Hauser, B. G., Hupp, J. T. and Snurr, R. Q. (2012). Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, **4**, 83–89.

Farrusseng, D., Aguado,S. and Pinel,C. (2009). Metal– Organic frameworks: opportunities for catalysis. Angewandte Chemie International Edition, **48(41)**, 7502-7513.

Ferey, G. (2008). Hybrid porous solids: past, present, future. Chemical Society Reviews, **37**(1), 191-214.

Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. and Cashion, J. D. (2002). Guest-Dependent spin

crossover in a nanoporous molecular framework material. Science, **298(5599)**, 1762-1765.

Hedin, N., Chen, L. and Laaksonen, A. (2010). Sorbents for CO_2 capture from flue gas-aspects from materials and theoretical chemistry. Nanoscale, **2(10)**, 1819-1841.

Hofman, K., Swinnen, J. V., Verhoeven, G. and Heyns, W. (2002). Coactivation of an endogenous progesterone receptor by TIF, in COS-7 cells. Science, **295(2)**, 469-474.

Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F. and Férey, G. (2006). Metal–Organic frameworks as efficient materials for drug delivery. Angewandte Chemie International Edition, **45**(**36**), 5974-5978.

Wozniak, J. J., Ecker, J. A. and Hildebrand R. J. (1995). Advanced natural gas vehicle development.Johns Hopkins Applied Physics Laboratory Technical Digest, **16**, 95-100.

Kim, J., Cho,H. Y.and. Ahn,W.S (2012). Synthesis and Adsorption/Catalytic Properties of the Metal Organic Framework CuBTC. Catalysis Surveys from Asia, **16(2)**, 106-119.

Kondo, M., Okubo, T., Asami, A., Noro, S.i., Yoshitomi, T., Kitagawa, S., Ishii, T., Matsuzaka, H.and Seki, K. (1999). Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: $[{Cu_2(pzdc)_2(L)}_n]$ (pzdc:pyrazine-2,3-dicarboxylate; L:a Pillar Ligand). Angewandte Chemie International Edition in English, **38**(1-2), 140-143.

Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S.and Seki, K. (1997). Three-Dimensional framework with channeling cavities for small molecules: $\{[M_2(4, 42 - bpy)_3(NO_3)_4] \cdot xH_2O\}_n$ (M : Co, Ni, Zn). Angewandte Chemie International Edition in English, **36**(16), 1725-1727. Konstas, K., Osl, T., Yang, Y., Batten, M., Burke, N., Hill, A. J.and Hill, M. R. (2012). Methane storage in metal organic frameworks. Journal of Materials Chemistry, **22(33)**, 16698-16708.

Lee, J. Y., Wood, C. D., Bradshaw, D., Rosseinsky, M. J. and Cooper, A. I. (2006). Hydrogen adsorption in microporous hypercrosslinked polymers. Chemical Communications, (25), 2670-2672.

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen S. T.and Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, **38(5)**, 1450-1459.

Llewellyn, P. L. and Maurin,G. (2005). Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials. Comptes Rendus Chimie, **8(3–4)**, 283-302.

Lu, C. M., Liu, J., Xiao,K.and Harris,A. T. (2010). Microwave enhanced synthesis of MOF-5 and its CO_2 capture ability at moderate temperatures across multiple capture and release cycles. Chemical Engineering Journal, **156**(2), 465-470.

Ma, L., Lee, J. Y., Li, J. and Lin, W. (2008). 3D Metal"Organic frameworks based on elongated tetracarboxylate building blocks for hydrogen storage. Inorganic Chemistry, **47(10)**, 3955-3957.

Ma, S., Sun, D., Ambrogio, M., Fillinger, J. A., Parkin, S. and Zhou, H. C. (2007). Framework-Catenation isomerism in Metal"Organic Frameworks and its impact on hydrogen uptake. Journal of the American Chemical Society, **129**(7), 1858-1859.

Min Wang, Q., Shen, D.,Bülow, M., Ling Lau, M., Deng, S.,Fitch, F. R.,Lemcoff N. O.and Semanscin J. (2002). Metallo-organic molecular sieve for gas separation and purification.Microporous and Mesoporous Materials, **55(2)**, 217-230.

Noro, S.i., Kitagawa, S., Kondo, M. and Seki, K. (2000). A new, methane adsorbent, porous coordination polymer $[{CuSiF}_{6}(4,42 \text{ -bipyridine})_{2}_{n}]$. Angewandte Chemie International Edition, **39(12)**, 2081-2084.

Burchel, T. and Rodgers, M. (2000). Low pressure storage of natural gas for vehicular applications. Society of Automotive Engineers Technical Papers, 2201-2205.

Senkovska, I. and Kaskel, S. (2008). High pressure methane adsorption in the metal-organic frameworks $Cu_3(btc)_2$, $Zn_2(bdc)_2dabco$, and $Cr_3F(H_2O)_2O(bdc)_3$. Microporous and Mesoporous Materials, **112(1–3)**, 108-115.

Son, W. J., Kim, J., Kim, J. and Ahn, W. S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, **47**, 6336-6338.

Tranchemontagne, D. J., Hunt, J. R. and Yaghi, O. M. (2008). Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, **64(36)**, 8553-8557. Wang, X. S., Ma, S., Rauch, K., Simmons, J. M., Yuan, D., Wang, X., Yildirim, T., Cole, W. C., López, J. J., Meijere, A. and Zhou, H.C. (2008). Metal"Organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chemistry of Materials, **20(9)**, 3145-3152.

Wu, H., Simmons, J. M., Liu, Y. Brown, C. M., Wang, X. S., Ma, S., Peterson, V. K., Southon, P. D., Kepert, C. J., Zhou, H.C., Yildirim, T. and Zhou, W. (2010). Metal–Organic frameworks with exceptionally high methane uptake: where and how is methane stored? Chemistry – A European Journal, **16(17)**, 5205-5214.

Yaghi, O. M., Davis, C. E., Li,G and Li,H. (1997). Selective guest binding by tailored channels in a 3-D porous Zinc(II)"Benzenetricarboxylate network. Journal of the American Chemical Society, **119**(**12**), 2861-2868.

Yun, J.H., Düren, T., Keil,F. J.and Seaton,N. A. (2002). Adsorption of methane, ethane, and their binary mixtures on MCM-41: experimental evaluation of methods for the prediction of adsorption equilibrium. Langmuir, **18(7)**, 2693-2701.

Zhou, W., Wu, H.,Hartman,M. R. and Yildirim,T. (2007). Hydrogen and Methane Adsorption in Metal"Organic Frameworks: A High-Pressure Volumetric Study. Journal of Physical Chemistry C, **111(44)**, 16131-1637.