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ABSTRACT:The main task of this work is related with the design of a class of SISO robust control law for the
regulation of substrate concentration (CDO) of an Industrial Activated Sludge Wastewater Plant. The control
design is related with an uncertainty estimator (reduced order observer) based Active Control. Departing from
the tracking error between the desired and the current substrate concentrations trajectories a control law is
designed and the plant is regulated to the corresponding set point of the COD concentration. To be realizable
the controller needs model information related with the kinetic term of COD consumption which is provides
with a reduced order observer, these coupled structure (observer based controller) is robust against model
uncertainties. The performance of the proposed control law is illustrated with numerical simulations employing
a mathematical model of an Industrial Activated Sludge Wastewater Plant tuned with industrial data.
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INTRODUCTION
The Activate Sludge Process (ASP) is the most

widely used biological treatment of liquid waste,
essentially because it is a cheap technology which can
be adapted to any kind of wastewater. In the activated
sludge process, a bacterial biomass suspension (the
activated sludge) is responsible for the removal of
pollutants. Depending on the design and the specific
application, an activated sludge wastewater treatment
plant can achieve biological nitrogen removal and
biological phosphorus removal, plus the removal of
organic carbon substances. Many different activated
sludge process configurations have evolved during
the years: (Jeppsson et al., 1996, Aouaoud et al., 2011,
Olsson et al., 2005, Chachuat et al., 2005) provides an
exhaustive review on the historical evolution of the
activated sludge process. The microorganisms in the
activated sludge are mainly bacteria, which can be
found also in the raw wastewater incoming into the
plant. The composition and the species depend not
only on the influent wastewater but also on the design
and operation of the wastewater treatment plant.
Bacteria constantly need energy in order to grow and
to support essential life activities. Growing cells utilize
substrate and nutrients located outside the cell
membrane for growth and energy in a process. Oxygen
is used by microorganisms to oxidize organic matter.

Some bacteria can use oxygen either as dissolved
oxygen or not: these bacteria are called heterotrophs.
They represent the major part of bacteria in activated
sludge and use organic carbon in the form of small
organic molecules as substrate. Other essential
bacter ia for the activated sludge process are
autotrophs. They can growth only with dissolved
oxygen and use inorganic carbon as substrate. To
maintain the microbiological population, sludge from
the settler is recirculated to the aerated tank. The
bacteria growth and particulate inert matter is removed
from the process as waste sludge.

For biological processes, several kinds of control
strategies have been proposed, adaptive, optimal, H∞,
linearizing and neuro-controllers, (Yoo et al., 2004,
Henze et al., 1987, Henze et al., 1995, Henze et al.,
1999) they have shown an adequate performance, for
a class of bioreacting systems, however, some of them
are coupled with optimizing routines or are model
based, their  main drawbacks are the over-
parameterization and lack of robustness under model
uncertainties. Recently, an alternative methodology
to control systems with high nonlinear behavior, have
been applied, this methodology is the Active Control
(AC); the controller design is based on the dynamic
of the control error i. e. the difference between the
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current and the desired trajectory of the system. This
methodology has been successfully employed for
synchronization of chaotic oscillators, (Isidori, 1995,
Ho et al., 2002, Vincent et al., 2005,) but design of
explicit controllers with application to regulation of
reacting process, at the authors known, have not been
studied enough. The realization of the corresponding
Active Control law is model based, such that under
model uncertainties the standard AC is not applicable.
To avoid the problem mentioned above, in this work is
proposed an observer based Active Control, where a
reduced order observer is designed to provide the
corresponding missing information (uncertain terms,
related with modeling errors) to the controller and
assuring a stable closed-loop behavior.

Wastewater engineering represents at present time
a subject area of worldwide interest, for reasons of the
public health, economic and social issues to which it
is closely associate. In particular the wastewater
generated by industrial processes is a very important
topic for engineering research, from them the
petrochemical industry under study produces a
wastewater which is generated in the different chemical
processes. The wastewater flow produced is about 7000
m3/d and contains volatile organic carbon’s substances
classified as toxics like 1,2 dichloroethane, chloroform,
benzene, among others volatile compounds, (VOC’s).
To comply environment legislation (ME, 1997, Igbinosa
et al., 2009) is around of 150 mg/L in order to discharge
the wastewater treated to the river. One of the main
effects on the plant operation are the actual temperature
conditions within the bioreactor are 32oC in October-
November reaching up to 41oC in August-September.
Due to this effect, the microorganism’s activity is
affected and this must be considered in the dynamic
modeling of the system. Some models have been
developed to describe the effect of temperature on
bacterial growth (Heitzer et al., 1991, Zwieterig et al.,
1991). The authors showed that at high temperatures
the maximum specific growth rate (µmax) is reduced.
There are several models describing the biological
process in the activated sludge plant, the developments
in the family proposed by the International Water
Association (IWA) represent a major contribute:
ASM1, the Activated Sludge Process Model No.1 can
be considered as the reference model since this model
triggered the general acceptance of the biological
process modelling. ASM1 was primarily developed to

describe the removal of organic compounds and
nitrogen with simultaneous consumption of oxygen
and nitrate as electron acceptor.  The model,
furthermore, aims at yielding a good description of the
sludge production. COD (Chemical Oxygen Demand)
was adopted as the measure of the concentration of
organic matter. ASM2, the Activated Sludge Process
Model No.2 extends the capabilities of the ASM1 of
the description of bio-phosphorus. ASM2d, the
Activated Sludge Process Model No.2d is built on the
ASM2 model adding the denitrifying activity of PAOs1
to allow a better description of the dynamics of
phosphate and nitrate. ASM3, the Activated Sludge
Process Model No.3 was also developed for biological
nitrogen removal, with basically the same goal as the
ASM1. The major difference between the ASM1 and
the ASM3 models is that the latter recognizes the
importance of storage polymers in the heterotrophic
activated sludge conversion (Henze et al., 1987, Henze
et al., 1995, Henze et al., 1999).

MATERIALS & METHODS
For control purposes a mathematical model of an

activated sludge process is employed, this model
presented in (Aguilar et al., 2005), consider a carbon
removal model with an dynamic energy balance to
introduce the temperature effects on the maximum
specific growth rate, mass transfer coefficient for
oxygen (kla) and death coefficient (kd), which were
incorporated in the mass balance equations of the
process. The temperature effect on the maximum
specific growth rate was evaluated with Equation 8,
the mass transfer coefficient for the oxygen  (kla) with
Equation 10 which is an empirical function of the air
flow (Aguilar et al.,2005), the death coefficient (kd) with
Equation 9, the evaporation flux of VOC´s  (KevS) is
also considered in the COD balance, together with the
inactivate biomass (1- fn)X  which contributes to growth
the substrate concentration in the bioreactor, all were
incorporated in the mass balance equations of the
process. The process is described by the following
mass balance equations (Raltowsky et al., 2005) , as a
first modeling approach of the temperature effect on
different parameters is considered introducing an
energy balance considering that the metabolic heat
generation can be deleted in comparison with the others
energy flows. The bioreactor behavior was assumed
as completely mixed flow reactor. In the reactor:
Substrate (S) concentration mass balance:
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Biomass (X) concentration mass balance:
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Oxygen (CO2) concentration mass balance:
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Where:
A    = Transport area (m2)
t       = time (d)
hc    = heat transfer coefficient
Qf    =  influent flow rate (m3/d)
Qr     =  recycle flow rate (m3/d)
QW   =  waste flow rate (m3/d)
Qair   = air flow rate (m3/d)
Sf     = COD concentration in the influent (mg/L)
S      = COD concentration in the reactor (mg/L)
X     = biomass concentration in the reactor (mg/L)
X r    = biomass concentration in the settler (mg/L)
CO2f = dissolved oxygen concentration in the influent
(mg/L)
CO2  = dissolved oxygen concentration in the reactor
(mg/L)

2satOC  = dissolved oxygen saturation
concentration (mg/L)
µ = specific growth rate (d-1)
µmax = maximum specific growth rate (d-1)
 µmax = b2 (T-285)2{1-exp[c(T-330.5)]}2

b= 0.05 (K-1 h-0.5)
c= 0.005 (K-1)
T= water temperature (oC)

Ks      =  30 mg/L (substrate saturation coefficient)
KOH = 0.2  mg/L (substrate saturation coefficient)
kd     = death coefficient  (d-1)

( )8                                    05.1
)20(

20

−
=

T

dd kk
 kd20=0.03 d-1= death coefficient at 20oC
Yx/s  = 0.67  = yield coefficient (mg biomass
produced/mg COD consumed)
YO2  =  2.03 = yield oxygen coefficient (mg biomass
produced /mg O2 consumed)
kla   = mass transfer coefficient (d-1)
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 kla20 = mass transfer coefficient at 20oC (d-1)
T = wastewater temperature in the reactor (oC)
V     = 15000 m3 (reactor volume)
VS   = 750 m3 (settler volume)
ρ     = density (g/cm3)
Cp  = Heat Capacity (kcal/g °C)

A suitable solution to the wastewater treatment
plant is the development of adequate information
systems to control and supervise the process.
However, a closer look at the current operation of
wastewater treatment plant reveals that automation is
still minimal even if in the scientific community and in
process industries the importance of automation and
control in these processes has been recognized in the
last years. Several reasons for this lack in wastewater
treatment plant can be found: i) the insight in the
process is still marginal, ii) reliable technologies are
still unsatisfactory or not existing, iii) the possibilities
to act on the process are still inapt or insufficient and,
most importantly, iv) wastewater treatment plant is
considered as a non-profit industry. Automation has
been considered costly and has not been part of the
process design.

For the control of aerobic wastewater plant, several
strategies have been proposed, considering several

(7)
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input-output selections and SISO and MIMO control
structures (Aguilar et al., 2001, González et al., 2001)
In this work is considered a SISO control structure, for
sake of simplicity, to show how the active control (AC)
can be implemented, following the pair of control and
controlled variables proposed in (Aguilar et al., 2005);
the COD (substrate) concentration is considered as
the controlled measured output (y). The COD is the
amount of oxygen required to oxidize, by chemical
means, organic carbon compounds completely to CO2
and H2O and it is measured is routinely made in
industrial operation, the corresponding control input
(u) is related with the input flow, which affect the input
substrate concentration rate. With the above, let us to
analyze the following subsystem related with the
substrate mass balance equation:

With:

, as the total COD consumption rate.
Note that the term contains the COD kinetic rate, the
non-activate biomass and the volatile substrate. Now,
it is proposed a desired COD closed-loop trajectory as
follows:

This desired output trajectory allows reaching the
corresponding set point ysp asymptotically with a
convergence rate given by the parameterα.
 Now, defining the control error as:

then,

from the above, the following controller is proposed,
applying the AC methodology:

such that this controller provides the following closed-
loop structure of the control error dynamic:

or in alternative form:

the exogenous function ζ  is chosen such that it can
provide a stable behavior to the control error trajectory,
in accordance with the following structure:

Note that the control input depends of the nonlinear
term             , consequently the controller is realizable if
only if the nonlinear term is known, which is an
important drawback for the standard AC
implementation when modeling errors are present.

One the major bottlenecks in the application of
computer monitoring and control for biological process
is the lack of reliable, sterilizable and robust sensors
for the on-line measurements of process key variables,
such as biomass, precursors, product concentrations
and consumption rates. Several attempts to quantify
the above variables have been employed, some of them
are optical techniques, electrochemical detection and
by viscosity, filtration and fluorescence methods
(Schuler and Schmidt, 1992), but these approaches
frequently do not properly address the most important
industrial problems and necessities. To tackled the
problem mentioned above, several estimation
techniques for bioprocess have been developed, these
techniques are often named soft-sensors some of them
are based on balancing technique, this approach is
adequate for steady-state operation, however it
become unstable when dynamic and corrupted
measured are presents (Dochain and Vanrolleghem,
2001); on other hand filtering (observing) theory where
extended Kalman filters, nonlinear Luenberger
observers, sliding-mode, high gain and so on have
been successfully employed  (Alvarez et al., 2005).
Considering our particular case, the state variable to
be regulated is directly the measures output of the
system, i. e. the COD concentration such that, a reduced

order observer to infer the uncertain term ( )oϑ  is
proposed as follows (Alvarez et al., 1999):

Where τ is the observer gain,    is the estimate of the
uncertain term and the observed uncertainty    is
obtained by solving the mass balance equation, in
accordance with the next equation:

As it can be seen, the structure of the proposed
observer  includes the derivative of the COD
concentration, which must be calculated in order to
obtain estimates of the reaction rate. However, the
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synthesis of derivators is a difficult task; moreover if
the concentration measurements are noisy the
synthesis could be impossible. In order to avoid this
situation the following change of variable is proposed:

Producing an uncertainty observer with the following
structure:

Note that with equations (20) and (21) the uncertain
term can be expressed finally as:

As can be seen this estimation methodology only
depends of measured variables, consequently is
completely realizable. Now, for the realization of the
robust (non ideal) AC, the estimate of the uncertain
term determinate above is coupled to the ideal AC to
produce:

Note that the above no ideal controller can recover its
ideal properties if the estimation error                                 tends
to zero, to prove this, let us consider the convergence
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analysis of the proposed observer, departing of the
unknown dynamic of the uncertain term:

The Equation 18 is an asymptotic proportional reduced
observer for the system given by Equation 24, where τ
> 0, determines the desired convergence rate of the
observer, if the following assumptions are satisfied:
There exist τ and N ∈ ℜ+ such that:
A1 the dynamic of the uncertain term is bounded i. e.

A2

Considering the above equation (24), the dynamic of
the estimation error is defined as:

Solving it renders:
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RESULTS & DISCUSSION
The mathematical model was validated with the

COD data obtained from the wastewater treatment plant
which was in operation during a year, from October
2002 to September 2003 as presented previously in
(Maqueda et al., 2005). For simulation purposes a step
disturbance in the recycle flow Qr is considered from
525 mg/l to 551 mg/l, besides other step disturbance
on the oxygen concentration at reactor input is also
considered, from 3 mg/l to 2 mg/l. A commercial PI
controller is simulated for comparison purposes, the
tuning of the PI control’s gains were done via input-
output response with a step disturbance in the control
input, which yields the following parameters: the
steady-state gain K = 2.8 mg d/Lm3 ; the characteristic
time π = 7 days; the proportional control gain Kp = 1.5
d-1 and the integral time τI = 7 d, these values were
obtained applying IMC tuning rules (Rivera et al.,1986)
.  For the robust AC controller the convergence rate α
= 10 d-1 and the observer gain  τ = 1 d-1 were considered.

Fig. 1 is related with the concentrations space portrait,
note that the controller lead the COD concentration to
the required set point (150 mg/l) with a biomass of
4200 mg/l and the dissolved oxygen is around 0.4 mg/
l, which is the closed-loop steady-state. Fig. 2 shows
the closed-loop time evolution of the COD
concentration, can be observed an asymptotic stable
behavior of the COD trajectory to the former set point
which is reached in 12 days for the proposed controller,
this settling time can be reduced with a more large
value of the parameterα, in order to improve the
convergence rate. The PI controller needs 47 days to
reach the corresponding set point. Fig. 3 is related with
the closed-loop performance of the control output
(COD concentration) when disturbances arrive, the
proposed AC controller has a faster response in
comparison with the PI controller. The control input
behavior can be seen in Fig. 4, note that the robust AC
controller show a faster response, the PI controller acts
lowly, not great control effort is needed to comply with

Fig. 1. Closed-loop steady-state phase portrait

Fig. 2. Closed-loop performance of the COD with the proposed controller
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Fig. 3. Closed-loop performance of the COD against disturbances

Fig. 4. Closed-loop performance of the system input (Input Flow m3/days) with proposed controller

the regulation task and finally Fig. 5 shows the closed-
loop performance of the reduced order observer, note a
satisfactory performance of the proposed estimation
methodology, this occurs because the proposed
methodology is able to regulated the process into more
wide operating region given its nonlinear properties
and the low parameters dependence, which helps to
avoid tuning issues.

CONCLUSION
A mathematical model of an Activated Sludge

Wastewater Plant is developed and corroborate with
industrial COD and operating data with good results.
This model is employed as a virtual process where the
total COD (substrate) consumption rate is supposed
uncertain (unknown). To avoid the problem of the
modeling errors a reduced order observer is proposed,
the information generated by the observer is coupled
with an Active Control law, such that a robust structure
against modeling error is achieved. Numerical
simulations illustrate the satisfactory performance of
the observer based AC law.
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