تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,044 |
تعداد دریافت فایل اصل مقاله | 97,231,185 |
تأثیر 14 هفته فعالیت استقامتی بر بیان miR-1 بطن چپ رتهای نر نژاد ویستار | ||
نشریه علوم زیستی ورزشی | ||
مقاله 5، دوره 8، شماره 1، فروردین 1395، صفحه 65-75 اصل مقاله (196.23 K) | ||
نوع مقاله: مقاله پژوهشی Released under CC BY-NC 4.0 license I Open Access I | ||
شناسه دیجیتال (DOI): 10.22059/jsb.2016.58235 | ||
نویسندگان | ||
محمد فتحی* 1؛ رضا قراخانلو2؛ حمید رجبی3 | ||
1استادیار فیزیولوژی ورزش گروه تربیت بدنی، دانشگاه لرستان، خر مآباد، ایران | ||
2دانشیار، گروه تربیت بدنی، دانشکدة علوم انسانی دانشگاه تربیت مدرس، تهران، ایران | ||
3دانشیار، دانشکدة تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، کرج، ایران | ||
چکیده | ||
miR-1 در بسیاری از فرایندهای سلولی از جمله هایپرتروفی بافت عضلانی (اسکلتی و قلبی) درگیر است. فعالیتهای استقامتی نیز موجب هایپرتروفی قلب میشود، بنابراین هدف این مطالعه بررسی اثر فعالیت استقامتی بر بیان miR-1 قلب است. بدین منظور 14 رت در شرایط کنترلشده (دما، چرخۀ روشنایی و تاریکی و دسترسی آزاد به آب و غذا) نگهداری شدند و بعد از آشناسازی با پروتکل تمرینی بهصورت تصادفی در دو گروه کنترل و تجربی قرار گرفتند. گروه تجربی یک برنامۀ (14 هفتهای) استقامتی را روی تردمیل اجرا کرد. در ادامه 48 ساعت پس از پایان آخرین جلسۀ تمرینی بیهوش و تشریح شدند، سپس قلب و بطن چپ آنها خارج و با استفاده از روش Real time-PCR میزان بیان miR-1 قلب آنها اندازهگیری شد. در پایان با استفاده از آزمون آماری t اطلاعات بهدستآمده ارزیابی شد. نتایج نشان داد که تفاوت معناداری در میانگین بیان miR-1 قلب گروه کنترل و تجربی وجود ندارد (191.P=). فعالیت استقامتی بر بیان miR-1 قلب تأثیر معناداری نداشت، احتمال دارد تغییرات miR-1 هرچند کم، در سطح پروتئین ژنهای هدف آن مشخص شود. | ||
کلیدواژهها | ||
بطن چپ؛ فعالیت استقامتی؛ قلب؛ miR-1 | ||
مراجع | ||
1.Callis, T.E. and D.Z. Wang. (2008). Taking microRNAs to heart. Trends Mol Med, 14(6): p. 254-60. 2.Chen, J.F., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38(2): p. 228-233. 3.Costantini, D.L., et al. (2005). The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell, 123(2): p. 347-58. 4.Czubryt, M.P. and E.N. Olson. (2004). Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res. 59: p. 105-24. 5.Davidsen, P.K., et al. (2011). High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. Journal of Applied Physiology. 110(2): p. 309-317. 6.Drummond, M.J., et al. (2008). Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab. 295(6): p. E1333-40. 7.Han, M., J. Toli, and M. Abdellatif. (2011). MicroRNAs in the cardiovascular system. Curr Opin Cardiol. 26(3): p. 181-9. 8.Hill, J.A. and E.N. Olson. (2008). Cardiac plasticity. N Engl J Med. 358(13): p. 1370-80. 9.Ikeda, S., et al. (2007). Altered microRNA expression in human heart disease. Physiol Genomics. 31(3): p. 367-73. 10.Ivey, K.N., et al. (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2(3): p. 219-29. 11.Jin, H., et al. (2000). Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol Heart Circ Physiol. 279(6): p. H2994-3002. 12.Kehat, I., et al. (2011). Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J Cell Biol. 193(1): p. 21-9. 13.Lee, C.T., T. Risom, and W.M. Strauss. (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol. 26(4): p. 209-18. 14.Livak, K.J. and T.D. Schmittgen. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔct Method. Methods. 25(4): p. 402-8. 15.McCarthy, J.J. and K.A. Esser. (2007). MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology. 102(1): p. 306-313. 16.Miska, E.A., et al. (1999). HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 18(18): p. 5099-107. 17.Nielsen, S., et al. (2010). Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 588(Pt 20): p. 4029-37. 18.Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9): p. e45. 19.Pluim, B.M., et al. (2000). The athlete’s heart: a meta-analysis of cardiac structure and function. Circulation. 101(3): p. 336-344. 20.Potthoff, M.J., E.N. Olson, and R. Bassel-Duby. (2007). Skeletal muscle remodeling. Current Opinion in Rheumatology. 19: p. 542-549. 21.Potthoff, M.J., et al. (2007). Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest. 117(9): p. 2459-67. 22.Safdar, A., et al. (2009). miRNA in the Regulation of Skeletal Muscle Adaptation to Acute Endurance Exercise in C57Bl/6J Male Mice. PLoS One. 4(5): p. e5610. 23.Sayed, D., et al. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 100(3): p. 416-24. 24.Schmittgen, T.D. and K.J. Livak. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 3(6): p. 1101-1108. 25.Soci, U.P., et al. (2011).MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 43(11): p. 665-73. 26.Sun, L., et al. (2010).Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sci. 86(1-2): p. 39-44. 27.Thum, T., et al. (2007). MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 116(3): p. 258-67. 28.van Rooij, E., N. Liu, and E.N. Olson. (2008). MicroRNAs flex their muscles. Trends in Genetics. 24(4): p. 159-166. 29.Weiner, R.B. and A.L. Baggish. (2012). Exercise-induced cardiac remodeling. Prog Cardiovasc Dis. 54(5): p. 380-6. 30.Wong, M.L. and J.F. Medrano. (2005). Real-time PCR for mRNA quantitation. Biotechniques. 39(1): p. 75-85. 31.Yuan, J.S., et al. (2006). Statistical analysis of real-time PCR data. BMC Bioinformatics. 7: p. 85-97. 32.Zhao, Y., D. Srivastava, and E. Samal. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 436(7048): p. 214-220. 33.Zhua, S.S., et al. (2008). Left ventricular function in physiologic and pathologic hypertrophy in Sprague–Dawley rats. Science & Sports. 23 p. 299-305. | ||
آمار تعداد مشاهده مقاله: 1,402 تعداد دریافت فایل اصل مقاله: 1,097 |