![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,694,195 |
تعداد دریافت فایل اصل مقاله | 98,923,652 |
تلفیق روشهای کوچ زمانی پیش - برانبارش و برانبارش صفحهای در تصویرسازی لرزهای ساختارهای پیچیده | ||
فیزیک زمین و فضا | ||
مقاله 6، دوره 42، شماره 2، شهریور 1395، صفحه 293-308 اصل مقاله (1.83 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2016.57737 | ||
نویسندگان | ||
مهرداد سلیمانی منفرد* 1؛ علی خلیلزاده2 | ||
1عضو هیات علمی | ||
2دانش آموخته کارشناسی ارشد/دانشگاه شاهرود | ||
چکیده | ||
روشهای مرسوم در پردازش دادههای لرزهنگاری بازتابی، در مواجه با ساختارهای پیچیده و یا حضور تغییرات شدید جانبی سرعت، معمولاً نتایج مطلوبی بدست نخواهند داد. بدین ترتیب در روشهای نوین تصویر سازی لرزهای، الگوریتمهای مورد استفاده به گونهایی طراحی میشوند که بتوان تصاویر لرزهای را مستقل از مدل سرعت تهیه کرد. روش سطح بازتاب مشترک، به عنوان یک روش مستقل از مدل سرعت در ساختارهای با هندسه پیچیده، تصویر لرزهای قابل قبولی بدست میدهد. در این تحقیق، سعی گردید که با استفاده از مزایای روش سطح بازتاب مشترک و عدم حساسیت بالای روش کوچ زمانی پیش از برانبارش کیرشهف به مدل سرعت، با تلفیق این دو روش، بتوان با برخی از مشکلات تصویر سازی در ساختارهای پیچیده، مقابله نمود. بدین ترتیب پس از تعیین استراتژی تلفیق و تعیین معادلات لازم، داده لرزهای مربوط به منطقهای در غرب ایران مورد پردازش قرار گرفت. همچنین نتایج با روش مرسوم کوچ زمانی پیش از برانبارش نیز مقایسه گردید. با مقایسه نتایج بدست آمده از هر دو روش، مشاهده گردید که تصویر لرزهای بدست آمده از تلفیق روش سطح بازتاب مشترک و کوچ زمانی پیش از برانبارش، قادر به آشکارسازی بیشتر و بهتر ساختارهای مورد جستجو بود. از دیگر مزایای تلفیق این دو زوش، استفاده از یک مدل سرعت بسیار ساده به منظور تهیه مقطع نهایی بود که این مساله در روشهای مرسوم کوچ بسیار حائز اهمیت میباشد. بنابراین میتوان بیان کرد که در مناطق با ساختارهای پیچیده، بتوان با استفاده از تلفیق این دو روش تصویر لرزهای با کیفیت قابل قبول تهیه کرد. | ||
کلیدواژهها | ||
تصویرسازی لرزهای؛ سطح بازتاب مشترک؛ سطح پراش مشترک؛ کوچ زمانی پیش از برانبارش؛ تداخل شیبها؛ ساختار پیچیدهی زمینشناسی | ||
مراجع | ||
ریاحی، م. و بازرگانی، ف.، 1383، بررسی کارایی روش مهاجرت PSPC در پردازش دادههای لرزهای بهدست آمده از محیطهای دارای تغییرات جانبی سرعت، م. فیزیک زمین و فضا، 30(2)، 91-79. سلیمانی، م.، شاهسونی، ه. و مان، ی.، 1392، شناسایی گسلها در دادههای لرزهنگاری بازتابی بهروش سطح پراش مشترک بررسی موردی، منطقة گرابن راین، آلمان، م. فیزیک زمین و فضا، 39(4)، 44-31. نبیبید هندی، م.، قوامی، ش. و مرادی، م.، 1383، بررسی و مقایسة کوچهای زمانی قبل و پس از برانبارش، م. فیزیک زمین و فضا، 30(2)، 63-55. Alaei B., 2006, An integrated procedure for migration velocity analysis in complex structures of thrust belts, Journal of Applied Geophysics, 59, 89-105.
Al-Yahya, K. M., 1989, Velocity analysis by iterative profile migration, Geophysics, 54(06), 718-729.
Baykulov, M., 2009, Seismic imaging in complex media with the Common Reflection Surface stack, Ph.D. Thesis, Hamburg University.
Baykulov, M., Brink, H. J., Gajewski, D. and Yoon, M. K., 2009, Revisiting the structural setting of the Glueckstadt Graben salt stock family, North German Basin, Tectonophysics, 470, 162-172. doi: 10.1016/j.tecto.2008.05.027.
Bergler, S., 2001, The common reflection surface stack for common offset- theory and application, Master Thesis Karlsruhe University.
Biondi, B., 2006, 3D seismic imaging, investigations in geophysics, 14, SEG Publishing, Tulsa.
Bóna, A., 2011, Shot-gather time migration of planar reflectors without velocity model, Geophysics, 76(2), S93-S101, doi: 10.1190/1.3549641.
Bongajum, E., Milkereit, B., Adam, E. and Meng, Y., 2012, Seismic imaging in hardrock environments: the role of heterogeneity? Tectonophysics, 572-573, 7-15, doi: 10.1016/j.tecto.2012.03.003.
Burnett, W. A., 2011, Multiazimuth velocity analysis using velocity-independent seismic imaging, Ph.D. thesis, University of Austin at Texas.
Cameron, M., Fomel, S. and Sethian, J., 2008, Time-to-depth conversion and seismic velocity estimation using time-migration velocity, Geophysics, 73(5), 205-210.
Canales, J. P., Tucholke, B. E. and Collins, J. A., 2004, Seismic reflection imaging of an oceanic detachment fault: Atlantis megamullion (Mid-Atlantic Ridge), Earth and Planetary Science Letters, 222, 543-560. doi: 10.1016/j.epsl.2004.02.023.
Docherty, P., 1991, A brief comparison of some Kirchhoff integral formulas for migration and inversion. Geophysics, 56, 1164-1169.
Dong, L., Zhenchun, L., Xiaodong, S., Ning, Q., and Xuefeng, Z., 2010, Prestack seismic data enhancement with the common-offset common reflection surface (CO CRS) Stack, 3rd International Conference on Biomedical Engineering and Informatics, BMEI.
Druzhinin, A., MacBeth, C. and Hitchen, K., 1999, Prestack depth imaging via model-independent stacking, Journal of Applied Geophysics, 42, 157-167.
Fehler, M. C. and Huang, L., 2002, Modern imaging using seismic reflection data, Annual Review of Earth Planetary Sciences, 30, 259-284.
Fomel, S., 2003, Time migration velocity analysis by velocity continuation. Geophysics, 68(5), 1662-1672.
Garabito, Oliva, P., C. and Cruz, J. C. R., 2011, Numerical analysis of the finite-offset common-reflection-surface travel time approximations, Journal of Applied Geophysics, 74, 89-99.
Garabito, C., 2014, Kirchhoff-type pre-stack time migration using the CRS stacking operator, 76th EAGE Conference & Exhibition.
Gelius, L. J. and Tygel, M., 2015, Migration-velocity building in time and depth from 3D (2D) Common-Reflection-Surface (CRS) stacking - theoretical framework, Studia Geophysica et Geodaetica, 59(2), 253-282. doi: 10.1007/s11200-014-1036-6.
Halley, P., Sule, R. and Sanny, T. A., 2009, Application of 2D common offset common reflection surface (CO-CRS) stack method towards synthetic data, 33rd annual convention and exhibition of Indonesian petroleum association.
Hinsch, R., Krawczyk, C. M., Gaedicke, C., Giraudo, R. and Demuro, D., 2002, Basement control on oblique thrust sheet evolution: seismic imaging of the active deformation front of Central Andes Bolivia. Tectonophysics, 355, 23-39, doi: 10.1016/S0040-1951(02)00132-4.
Höcht, G., de Bazelaire, E., Majer, P. and Hubral, P., 1999, Seismics and optics: hyperbolae and curvatures, Journal of Applied Geophysics, 42(3, 4), 261-281.
Hua, B. and McMechan, G. A., 2003, Parsimonious 2D pre-stack Kirchhoff depth migration, Geophysics, 68, 1043-1051.
Hubral, P., 1983, Computing true amplitude reflections in a laterally inhomogeneous earth, Geophysics, 48(8), 1051-1062.
Hubral, P., 1999, Macro model independent seismic reflection imaging, Journal of Applied Geophysics, 42(3-4), 60-73.
Jäger, R., Mann, J., Höcht, G. and Hubral, P., 2001, Common-reflection-surface stack: image and attributes, Geophysics, 66(1), 97-109.
Karazincir, M. H. and Gerrard, C. M., 2006, Explicit high order reverse time pre-stack depth migration, Expanded Abstracts, SEG, 2353-2357.
Keydar, S., Medvedev, B., Al-Zoubi, A., Ezersky, M. and Akkawi, E., 2013, 3D imaging of Dead Sea area using weighted multipath summation: a case study, International Journal of Geophysics, 2013, Article ID 692452, 1-7, doi: 10.1155/2013/692452.
Khoshnavaz, M. and Urosevic, M., 2013, A comparative overview of velocity-independent imaging's methods, ASEG Extended Abstracts, 2013, 1-5. doi: 10.1071/ASEG2013ab078.
Landa, E., Fomel, S. and Moser, T. J., 2006, Path-integral seismic imaging, Geophysical Prospecting, 54, 491-503, doi: 10.1111/j.1365-2478.2006.00552. x.
Leite, L. W. B., Lima, H. M., Heilmann, B. Z. and Mann, J., 2010, CRS-based Seismic Imaging in complex marine geology, 72nd EAGE Conference & Exhibition, Barcelona, Spain, P396.
Liu, Q. and Gu, Y. J., 2012, Seismic imaging: From classical to adjoint tomography, Tectonophysics, 566-567, 31-66, doi: 0.1016/j.tecto.2012.07.006.
Mann, J., Jäger, R., Müller, T., Höcht, G. and Hubral, P., 1999, Common-reflection-surface-stack, a real data example, Journal of Applied Geophysics., 42(3,4), 301-318.
Mann, J., 2002, Extensions and applications of the common-reflection-surface stack method, Logos Verlag, Berlin.
Matsushima, J., Okubo, Y., Rokugawa, S., Yokota, T., Tanaka, K., Tsuchiya, T. and Narita, N., 2003, Seismic reflector imaging by prestack time migration in the Kakkonda geothermal field, Japan, Geothermics, 32, 79-99, doi: 10.1016/S0375-6505(02)00052-4.
Menyoli, E., Gajewski, D. and Huebscher, C., 2004, Imaging of complex basin structure with common reflection surface (CRS) stack method, Geophysical Journal International, 157, 1206-1216, doi: 10.1111/j.1365-246X.2004.02268. x.
Müller, T., 1999, The Common reflection surface stack method – seismic imaging without explicit knowledge of the velocity model, Der Andere Verlag, Bad Iburg.
Nita, B. G., 2006, A comparison of the imaging conditions and principles in depth migration algorithms, International journal of tomography and statistics, 4(6), 5-16.
Ottolini, R., 1983, Velocity independent seismic imaging, in SEP-37, Stanford Exploration Project, 59-68.
Prüssmann, J., Frehers, S., Ballesteros, R., Caballero, A. and Clemente, G., 2008, CRS based depth model building and imaging of 3D seismic data from the Gulf of Mexico Coast, Geophysics, 73, 303-311.
Robein, E., 2003, Velocities, time imaging and depth imaging in reflection seismic, principles and methods, EAGE Press, Netherlands.
Robein, E., 2010, Seismic imaging, EAGE Press, Netherlands.
Santos, H. B., Schleicher, J. and Novais, A., 2013, Initial-model construction for MVA techniques, 75th EAGE Conference and Exhibition incorporating SPE EUROPEC.
Sava, P. and Hill, S., 2009, Overview and classification of wavefield seismic imaging methods, The Leading edge, 28(2), 170-183, doi: 10.1190/1.3086052. Sava, P. and Fomel, S., 2006, Time-shift imaging condition in seismic migration, Geophysics, 71(6), S209-S217, doi: 10.1190/1.2338824.
Schleicher, J., Costa, J. C. and Novais, A., 2008, Time-migration velocity analysis by image-wave propagation of common-image gathers, Geophysics, 73(5), 161-171.
Schultz, P. and Sherwood, J., 1980, Depth migration before stack, Geophysics, 45, 376-393.
Siliqi, R., Herrmann, P., Prescott, A. and Capar, L., 2007, Automatic dense high order RMO picking EAGE 69th Conference & Exhibition, Extended abstracts, PO37.
Tomas, C. and Gallo, C., 2014, 3D common offset CRS for data preconditioning, 76th EAGE Conference & Exhibition.
Tygel, M., Ursin, B., Iversen, E. and de Hoop, M. V., 2009, An interpretation of CRS attributes of time-migrated reflections, WIT Reports, 13, 260-268.
Virieux, J. and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74(6), 1-26.
Wang, T. K., Chen, M. K., Lee, C. S. and Xia, K., 2006, Seismic imaging of the transitional crust across the northeastern margin of the South China Sea, Tectonophysics, 412, 237–254, doi: 10.1016/j.tecto.2005.10.039.
Yang, K., Bao-shu Chen, B. S., Wang, X., J., Yang, X., J. and Liu, J. R., 2012, Handling dip discrimination phenomenon in common-reflection-surface stack via combination of output-imaging-scheme and migration/demigration, Geophysical Prospecting, 60, 255-269.
Yoon, M. K., Baykulov, M., Dümmong, S., Brink, H. J. and Gajewski, D., 2009, Reprocessing of deep seismic reflection data from the North German Basin with the common reflection surface stack, Tectonophysics, 472, 273-283, doi: 10.1016/ j. tecto. 2008. 05. 010.
Yilmaz, O., 2001, Seismic data analysis, Society of Exploration Geophysicists.
Zhao, D., Huang, Z., Umino, N., Hasegawa, A. and Yoshida, T., 2011, Seismic imaging of the Amur–Okhotsk plate boundary zone in the Japan Sea, Physics of the Earth and Planetary Interiors, 188, 82-95, doi: 10.1016/j.pepi.2011.06.013. | ||
آمار تعداد مشاهده مقاله: 1,989 تعداد دریافت فایل اصل مقاله: 1,198 |