

Energy Equipment and Systems

http://energyequipsys.ut.ac.ir www.energyeuquipsys.com

Study on performance and methods to optimize thermal oil boiler efficiency in cement industry

Authors

Hamideh Mehdizadeh ^{a*} Abbas Alishah ^a Saeid Hojjati Astani ^b

^a Faculty of Chemical, Petroleum, and Gas Engineering, Semnan University, 35196-45399,Semnan, Iran

^b Technical Department, Mazandaran Cement Company, Neka, Iran

Article history:

Received : 1 November 2015 Accepted : 16 December 2015

ABSTRACT

Cement production is an energy-intensive process, so that the cement industry occupies a top position among other energyconsuming industries. Among the equipment used in cement industries, boilers are one of the energy-consuming equipment. Boilers are among the common heating equipment in industrial, commercial, and institutional facilities. In this paper, the performance of thermal oil boiler and useful methods in improving its efficiency and saving energy was investigated. Under normal condition, results showed that the boiler was only working with 55% of its capacity, and in this case, boiler efficiency was 77.48%, based on the heat loss method. Moreover, optimization of excess air level in combustion process as one of the improving performance methods increased the boiler efficiency by about 3%. The volume of fuel was also reduced to about 34.07 m³/HR, using economizer as another method.

Keywords: Boiler Efficiency, Economizer, Excess Air, Thermal Oil Boiler.

1. Introduction

Cement production is an energy intensive process worldwide. Theoretically, the energy consumption is about 4 GJ per ton of cement produced. Moreover, a minimum of about 1.6GJ heat is required to produce one ton clinker. However, the average specific energy consumption varies from about 2.95 GJ/ton for well-equipped advanced kiln to about 5.29 GJ/ton for the wet process. For example, India key plants produce clinker at best practice energy consumption of about 3.06 GJ/ton [1].

Security of supply, environmental sustainability and competitiveness (production of cement by using minimum energy in the most cost effective way possible), are important objectives of energy policy in the European Union [2-3]. One of the most effective methods for the energy

*Corresponding author: Hamideh Mehdizadeh

Address: Faculty of Chemical, Petroleum, and Gas Engineering, Semnan University, 35196-45399, Semnan, Iran consumption management in the cement industry is an energy audit. The main aim of an energy audit is to analyze the energy consumption of different components and to provide accurate information in determining the possible opportunities for energy conservation. Waste heat recovery for the hot gases in the equipment has been recognized as a potential way to improve the overall energy efficiency [4-5].

Boilers are one of the energy-consuming equipment in a cement plant. They are widely used in the cement production process, for heating furnace fuel. The boiler transfers combustion heat to water until it becomes heated steam or water. The hot steam or water under pressure has the ability to transfer the heat through a process known as heating furnace fuel. The steam boiler system comprises the fuel system, feed water system and steam system [6-7].

The fuel system includes all equipment required to supply fuel to produce the necessary heat which depends on the type of

E-mail address: h.mehdizadeh@semnan.ac.ir

fuel used in the boiler. The feed water system provides water to the boiler and automatically adjusts it to encounter the steam demand. The steam system collects and supervises the steam in the boiler. Throughout the system, steam pressure is collected using valves and regulated with steam pressure gauges. Thermal oil boiler is also a type of indirect process heating in which maintainable temperatures for the user equipment are provided [6].

The percentage of useful energy input used in the generated heat is indicative of the boiler efficiency. Factors affecting boiler efficiency are, heat loss and excess air used for the fuel combustion. Boilers are most efficient when the combustion air used is only slightly higher than the stoichiometric combustion air [8-9]. Therefore, marinating low excess air levels lead to reduced significant fuel and cost savings. Moreover, additional equipment with boiler (such as economizer) can be used to boiler achieve higher efficiency. An economizer preheats the feed water, using the waste heat in the exhaust fuel gas [10-11].

This paper focuses on the thermal oil boiler performance in the Mazandaran cement plant. It also presents and describes useful methods (excess air control and use of economizer) for increasing boiler efficiency and energy savings.

Abbreviations

- η Boiler efficiency
- T_a Input air temperature
- T_g Output flue gas temperature
- Q₁ Heat loss due to evaporate of moisture and combustion of the hydrogen in the fuel
- $Q_{\rm f}$ Dry flue gas heat loss
- S.L Total stack heat loss

2. Specification of Boiler system

Boilers are used in industries to generate hot water or steam. Stocker fluid boiler, pulverized boilers, package boiler, thermic fluid (oil) boiler, water tube boiler and waste heat boilers are all various types of boilers in commercial and institutional industrial. facilities. Boiler plant operation is energy intensive, hence it is necessary to make the process very efficient at reduced operating cost [6]. In recent times, thermic oil boilers have found wide application in process heating as in the cement industry. Thermal oil boiler is a type of indirect process heating in which oil is heated due to heat transfer from the fluid phase. The thermic fluid (oil) boiler consists of a double coil and three pass construction. The oil is heated up in the heater and circulated to one or more heat energy user equipment within a closed loop system. Then, heat transfers through a heat exchanger and the oil is then refused to the boiler [6].

Technical specification of hot oil boiler in the Mazandaran cement plant is described in Table 1.

The physical and chemical properties of used oil in the boiler are also presented in Table 2.

Fuel combustion supplies the required heat for heating oil in the boiler. Fuel is any substance that can be burned to produce sufficient heat energy for process heating,

 Table 2. Physical and chemical properties of hot oil in boiler

Specification of oil							
Specific heat capacity	2.1 w/mc						
Density	0.8 gr/cc						
Viscosity at 1000 °c	5.5 cSt						
Oil viscosity	112cSt						

Table 1.	Technical	specification	of hot	oil ł	ooiler
14010 1.	reenneur	specification	ornot	on c	,01101

Specification of boiler								
Hot oil production capacity 3700000 kcal/hr								
Hot oil pressure	10 bars							
Fuel	Natural gas							
Outlet temperature (oil)	152°C							
Back temperature (oil)	132°C							
Flue gas temperature	241°C							
Volumetric flow rate	251 m^3							

using combustion air. The combustion process is the rapid chemical combustion of fuel (carbon and hydrogen) with oxygen from the combustion air which occurs in the combustion chamber (furnace) within the boiler. A successful combustion process depends on the mixing of fuel and air plus turbulence, combustion temperature and combustion time. Less time and a higher combustion chamber temperature is required for the completion of a good combustion process.

Various oils and natural gas are the most common fuels in boilers. Natural gas is the most convenient and clean burning fuel, because it can be easily mixed and does not require on site storage. The prime components of natural gas are methane (CH_4) and ethane (C_2H_6).

Percentage of chemical components in natural gas fuel and exhaust flue gases of boiler in thermal oil boiler of the Mazandaran cement plant is provided in Tables 3 and 4, respectively.

3. Performance evaluation of thermal oil boiler

The performance parameters of a thermal oil boiler, like efficiency boiler, are reduced with time due to various reasons, such as incomplete combustion, poor heat transfer, poor maintenance, poor operation and fuel quality. Therefore, the evaluation of energy (heat loss) and mass (amount of combustion air) balances are required to determine the efficiency of the boiler [8-9].

Energy balance helps to evaluate the boiler efficiency through the determination of avoidable and unavoidable heat loss. Combustion air is also an important parameter which affects the boiler efficiency.

3.1. Boiler efficiency

The thermal efficiency of a boiler is an appropriate measurement of the chosen equipment and operation used transfer the combustion heat to heat oil in oil or steam. In another word, boiler efficiency is defined as "the percentage of useful heat input that effectively used in the generate steam".

There are two different means of assessing boiler efficiency: direct method and indirect method [9].

Direct method

Direct method measures the boiler efficiency as the ratio of the useful heat output produced by a boiler to the energy content of boiler fuel [9]. That is.

boiler efficiency (η)

$$=\frac{\text{boiler heat output}}{\text{boiler heat input (fuel)}} \times 100$$

The accurate measurements of the useful heat produced by a boiler and of the quantity and heating value of the fired fuel are necessary to calculate the boiler efficiency.

Indirect method

According the British standard, BS 845:1987 [12] and the USA standard ASME PTC-4-1, boiler efficiency can be measured by subtracting the heat loss fraction from 100 [9]. Thus

boiler efficiency
$$(\eta)$$
 (2)

$$=100$$
 - total heat losses

The indirect method is also known as the heat loss method. Hence, the indirect method can be provided as a better understanding of the effect of individual heat losses on the efficiency of the boiler.

 Table 3. The chemical composition of components in natural gas

Table 3. The chemical composition of components in natural gas									
Component	CH	$I_4 C_2$	$H_6 C_3$	$H_8 \qquad C_4 H$	H_{10} $C_5 H_{12}$	CO_2			
	067	10/ 1.4	<u> </u>	$\frac{1}{20}$ 0.12	20/ 0.050/	0.20/			
	96.7	'% 1.6	0% 1.2	2% 0.13	3% 0.05%	0.3%			
		Table 4.Spe	cification of	f exhaust flue	gas				
Component	O_2	CO_2	СО	NO	NO_2	N_2			
	8.78%	6.92%	0.001%	0.005%	0.00005%	84.28%			

.....

3.2. Energy balance

The combustion process in a boiler, as shown in Fig.1, is a form of energy flow in a boiler. The energy balance can be described in the following equation:

Boiler energy input = useful energy + energy losses

The sources of heat energy input are air combustion and fuel as a major energy source.

An energy balance is an attempt to balance the total input energy of a boiler against the energy leaving the boiler in different form.

Figure 2 illustrates the different energy losses occurring for thermal oil boiler in the cement industry.

3.2.1. Flue gas heat loss

The heat discharged from the boiler stack, as the flue gas heat loss, is usually the largest heat losses in the burned fuel boiler. Temperature and flue gas analysis can be used to compute the heat loss. The flue gas heat loss consists of two parts which can be calculated separately according to B5845 standard [13]. Hence

dry flue gas heat loss in stack can be calculated using

$$Q_f = \frac{K_1(T_g - T_a)}{20.9 - \% O_2}$$
 (3)

• Heat loss due to evaporation of moisture and combustion of the hydrogen in the is obtained from

$$Q_{l} = K_{2} \left[1121.4 + \left(T_{g} - T_{a} \right) \right]$$
(4)

and

• The total stack heat loss is calculated as

$$S.L = Q_f + Q_l \quad . \tag{5}$$

3.2.2. Radiation and convection heat loss

Radiation is the main form of heat transfer from the boiler to the environment (boiler room). The radiation heat loss of a boiler is primarily a function of the surface applied temperature and the thermal insulation. Moreover, the convection heat loss is a function of temperature and air velocity in the boiler room. Thermal insulation maintains the outside surface boiler at a reliable temperature by reducing heat radiation. The intensity of heat losses depends on the temperature, the pressure and the capacity of the boiler [9].

Under similar conditions of fuel quality and combustion method, an increase in the size and capacity of the boiler reduces the heat loss by radiation, thereby increasing the boiler efficiency. Moreover, radiation loss is independent of the type of fuel burned [12].

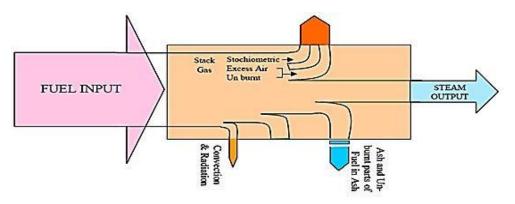


Fig. 1. Energy balance diagram of a boiler [9]

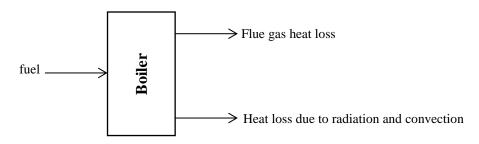


Fig. 2. Typical losses from thermal oil boiler [9]

3.3. Excess air

In theory, for the most efficient combustion (stoichiometric combustion), combustion process should be done using a perfect ratio of fuel and air, with no unburned fuel and unused air. But, in practice, excess air beyond the theoretical air needs to be added to the combustion process, because stoichiometric combustion is never achieved.

Moreover, if excess air is not added to the

4. Results and Discussion

4.1. Boiler performance of Mazandaran cement plant

The radiation heat loss emitted from the surface casing of the boiler is shown in Fig.3.

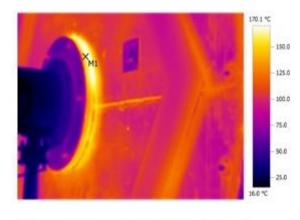
Moreover, total stock heat loss of the boiler, which includes the heat loss due to dry as stock and evaporated moisture and combustion of hydrogen in the fuel was given as 22.52%. This is calculated using

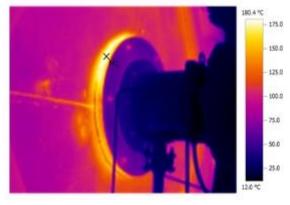
$$S.L = \frac{K_1 (T_g - T_a)}{20.9 - O_2} + K_2 [1121.4 + (T_g - T_a)] = \frac{0.615 \times (241 - 21)}{20.9 - 8.78} + 0.0083 \times [1121.4 + (241 - 21)]$$
(11)
= 22.52%.

boiler combustion operation, carbon monoxide (CO) and smoke will create additional surface fouls and emissions.

Complete combustion equations of natural gas are given as

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O, \qquad (6)$$


$$C_2H_6 + 3.5O_2 \rightarrow 2CO_2 + 3H_2O$$
, (7)


$$C_3H_8 + 5O_2 \to 3CO_2 + 4H_2O$$
, (8)

$$C_4 H_{10} + 6.5O_2 \rightarrow 4CO_2 + 5H_2O$$
, (9)

$$C_5 H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$$
. (10)

and

According to the heat loss method (indirect method) and total heat loss, efficiency of thermal oil boiler in the Mazandaran cement plant was obtained as 77.48%. That is

$$\eta = 100 - S.L = 100 - 22.52 = 77.48\%$$
.

Moreover, the boiler operated at a 55%capacity level. Thus

$$Q = m \ cp \ \Delta T$$

= 200800 ($\frac{kg}{s}$) × 2.1 × 20
= 8433600 $\frac{kj}{hr}$ = 2056975.6 $\frac{kcal}{hr}$ (12)

Fig. 3. Radiation heat loss from the boiler surface casing

$$\beta = \frac{\text{boiler performance}}{capacity}$$
$$= \frac{2056975.6}{3700000} = 55\%$$
(13)

In this paper, the volume of fuel and excess air used in the boiler was calculated by considering the following assumptions:

- 1. Fuel and air were considered ideal gases and the ideal equation of state was used in the calculations.
- 2. Complete combustion in the boiler was assumed, although adverse reactions such as the formation of CO and NO_x in the combustion process were carried out.
- 3. Penetration of air into the boiler was ignored.
- 4. Mole fraction of gas was equal to the volume fraction.

Primary components in the flue gas per 100 kmol of dry gas based on assumptions is shown in Table 5.

Volume of consuming fuel and excess air in thermal oil boiler were also obtained as $356.05 \text{ cm}^3/\text{h}$ and 63.43%, respectively. Hence

Fuel Volume =
$$\begin{pmatrix} CH_4(kmol/hr) \\ + C_2H_6(kmol/hr) \\ + C_3H_8(kmol/hr) \end{pmatrix} \times 24.45$$

 $= 360.12m^3 / hr$

and

Excess air =
$$\frac{O_2 - 0.5CO}{0.2682N_2 - (O_2 - 0.5CO)} \times 100$$

= $\frac{8.78 - (0.5 \times 0.001)}{(0.2682 \times 84.29) - (8.78 - (0.5 \times 0.001))}$
= 63.43%. (15)

Mathematical calculation of flue gas analysis and natural gas consumption in the boiler of the Mazandaran cement plant are provided in Appendix A.

4.2. Methods of improving boiler efficiency

Thermal energy cost in boilers represents a considerable proportion of the total cement production. Because part of the combustion energy in boilers is wasted, opportunities exist to address the subject of low– medium boiler

efficiency. Energy losses and therefore saving energy opportunities in a boiler can be related to avoidable heat loss, heat transfer and combustion.

There are two methods of energy saving in a boiler system:

- 1. Energy saving throughout the year has been to frequently monitor and control excess air level.
- 2. The use of economizer with boiler
 - 4.2.1. Optimization of excess air level

One method of maintaining low air levels in fuel combustion and improving the efficiency of the boiler is to frequently control and calibrate excess air levels. Often, air/fuel ratio in a boiler is calibrated one or twice per year in high fire. This is referred to as the excess air re-correction system, and is the ideal method to increase boiler efficiency, because it applies the analysis of the combustion flue gas as the true final measure of the combustion effectiveness. A combustion flue gas analysis can be used to manually or automatically adjust the excess air. The amount of excess air depends on various factors such as type of boiler, burner and fuel [14-16].

The theoretical curves of excess air show that carbon dioxide (CO₂) or oxygen (O₂) can be used to specify the excess air in the combustion process. It is important to note that measurement of carbon dioxide alone does not determine on which side the stoichiometric combustion is operating. In contrast, this obscurity does not exist in the excess air– oxygen relationship. For this reason, the measurement of O₂ is perfected. An examination of oxygen of each fuel at a given excess air setting is reasonably constant. The curves show the different contents of each fuel effect the produced CO₂ content [17].

The excess air theoretical curves are shown in Figs. 4 and 5.

As earlier mentioned, thermal oil boiler of the Mazandaran cement plant worked only with 55% of its capacity. So, it seems that the optimum amount of excess air for maximum boiler efficiency is 30 percent higher than the stoichiometric combustion air. In other words, excess air reduction of up to 30% is feasible and the boiler will operate with a maximum efficiency.

 Table 5. Flue gas composition per 100 kmol of dry natural gas

 Component
 CH4
 C2H6
 C3H8
 C4H10
 C5H12

 6.66%
 0.11%
 0.08%
 0.008%
 0.003%

(14)

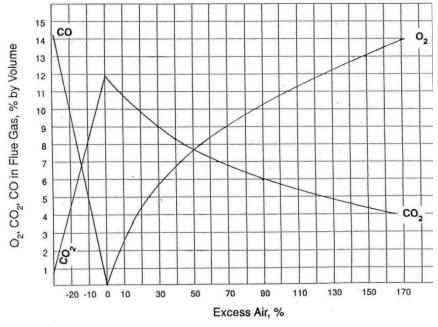
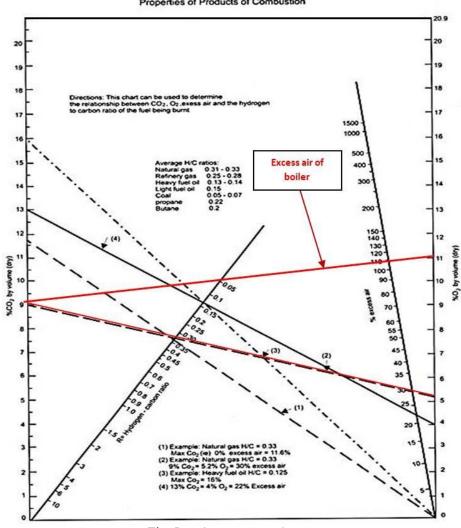



Fig. 4.Volume of O2, CO2 and CO in flue gas versus excess air [17]

Properties of Products of Combustion

Fig. 5.Optimum excess air [17]

Moreover, controlling excess air to an optimum value always results in a reduction in the sum of heat loss of flue gas and heat loss due to incomplete combustion. Thus

$$S.L = \frac{K_1(T_g - T_a)}{20.9 - O_2} + K_2 [1121.4 + (T_g - T_a)]$$

= $\frac{0.615 \times (241 - 21)}{20.9 - 5} + 0.0083 \times [1121.4 + (241 - 21)]$
= 19.81%

 $\eta = 100 - S.L = 100 - 19.81 = 80.19\%$.

4.2.2. Economizer

Economizer is a mechanical device intended to reduce the energy consumption by extracting heat from the flue gas leaving the boiler, and transferring the heat to the feed water. Therefore, an economizer can recover more useful energy heat in order to improve the boiler efficiency. The boiler efficiency directly depends on the efficiency of heat produced. The combustion of natural gas needs a flow of excess air in order to achieve complete combustion. The temperature of the combustion products and quantity of used excess air in the boiler are two key variables in evaluating the boiler efficiency [7,9].

Economizer is made of a stainless steel or aluminum alloy which can be fitted inside the main boiler casing or separately positioned outside the boiler. The exhaust gases pass through the cylindrical tubes which are either plain steel or finned to improve the heat transfer.

Non-corrosion economizer by acidic compounds is a significant point in the design, because sulfur compounds can be found in most fuels. Sulfur compounds are converted to sulfur dioxide in the combustion process. Moreover, water vapor is produced by the combustion of hydrocarbons, and sulfuric acid will then be produced by the reaction of water vapor and dioxide sulfur [7].

The produced steam from the distillation of acid leads to the corrosion of economizer. Therefore, a consideration of this point is of great importance in the design of an economizer.

In this paper, the ASPEN AEEROTRAN software was used to design of an economizer. Hot gas recuperator specification in the boiler is given in Table 6. The thermal and mechanical details of designed economizer are also represented in Appendix B.

Based on the natural gas combustion and improved combustion efficiency of thermal oil boiler in the Mazandaran cement plant, the theoretical combustion data and volume of fuelis given in Table 7.

5. Conclusion

This paper described the performance of boiler's Mazandaran cement plant and two methods useful in improving the efficiency of a boiler, based on optimization of excess air and installation of an economizer. Of the two methods, the controlling of excess air in the boiler was more difficult than using the economizer.

The results of the investigation are as follows:

- In normal conditions, boiler worked with 55% of its capacity. In this case, the amount of excess air and boiler efficiency were 63.43 percent and 77.48 percent, respectively.
- Excess air was required in a fuel combustion process to ensure complete combustion. On the other hand, the minimum heat losses and thus maximum boiler efficiency occurred when the optimum excess air level was used.
- Controlling of excess air level to an optimum level (oxygen analyzer) resulted in a reduction in the volume of fuel and flue gas heat losses. Moreover, with 32% reduction in the excess air level, there was approximately 3% rise in the boiler efficiency.
- The results have shown that the installation of economizer on the boiler can decrease the operation cost by reducing the volume of fuel. It also will lead to an increase in the boiler efficiency.

References

- Engin T., Ari V., Energy Auditing and Recovery for Dry Type Cement Rotary Kiln Systems—A Case Study, Energy Conversion and Management (2005) 46:551–562.
- [2] Worrell E., Martin N., Price L., Potentials for Energy Efficiency Improvement in the US Cement Industry, Energy (2000) 25:1189–1214.
- [3] Khurana S., Banerjee R., Gaitonde U., Energy Balance and Cogeneration for a Cement Plant, Applied Thermal Engineering (2002) 22:485–494.

1	Company:						
2	Location:						
3	Service of Unit: (Our Reference:					
4	Item No.: Yo	ur Reference:					
-		Job No.:					
6	Size & Type 1762/1079.	73					
7	Surf/Unit-Finned Tube 85.4	m²	E	Bare area/b	undle	7.9 m	-
8	Heat exchanged 96.9	kW	1	ATD, Eff		59.25 °(;
9	Transfer Rate-Finned 19.2	Bare, Service	206.7 (lean		214.8 W	//(m² K)
10		PERFORMANCE DA	TA - TUBE	SIDE			
11	Fluid Circulated Oil	100 (190-191-199) (140-191-191-191-191-	177XR CHERODER	HARRIN			In/Out
12	Total Fluid Entering 21000	0 kg/h	Density, Lio		kg/m²	833.	7/833.7
13		In/Out	Density, Va	P	kg/m³		1
14	Temperature °C	132 / 132.79	Specific He	at, Liq	kJ/(kg K)	2.11	4/2.114
15	Liquid kg/s S	58.3333 / 58.3333	Specific He	at, Vap	kJ/(kg K)		1
16	Vapor kg/s	1	Therm. Cor	nd, Liq	W/(m K)	0.113	3/0.1133
17	Noncondensable kg/s	1	Therm. Cor	nd, Vap	W/(m K)	a denter	1
18	Steam kg/s	1	Freeze Poir	nt	°C		
19	Water kg/s	1	BubblePoin	tDewPoint	°C		1
20	Molecular wt, Vap	1	Latent heat	5	kJ/kg		
21	Molecular wt, NC	45	Inlet pressu		bar		11
22	Viscosity, Liq mPa s	5.5941 / 5.4689	Pres Drop,	Allow/Calc		0.6894	B/0.02971
23	Viscosity, Vap	1	Fouling res	istance	m [*] K/W	0000000000000	
24		PERFORMANCE DA	ATA - GAS S	IDE			
25	Gas Quantity kg/s	1.1	Viscosity	11	mPa s	0.026	8/0.0235
26	Temperature in °C	241/160	Density, Lio	ĺ	kg/m [*]	0.6	7/0.8
27	Static Pressure bar	1.00009	Specific He	at, Liq	kJ/(kg K)	1.09	7/1.08
28	Pres Drop, Allow/Cal@a	249/29	Therm. Cor	nd, Vap	W/(m K)	0.038	2/0.0328
29	Altitude m		Fouling resi	istance	m ² K/W	0	.00088
30	Face Velocity 1.71 m/s Bund	le velocity 2.2	7 kg/s/mª	Design	Ambient	143	°C
31	1	DESIGN-MATERIAL	S-CONSTRU	ICTION			
32	Design pressure 16.47848bar	Test Pressure Coo	le	Design	temperatur	e 207.78	°C
33	TUBE BUNDLE	Heade	er	and the second s	on Driver Storreye	Tube	1.0
34	Size 1762	Type Plug		Materia	CS		
35	Number/bay 1	Material		Specific	ations We	lded	
36	Tube Rows 6	Passes 1		OD	30	Min Thk.	1.65 mr
	Arrangement	Plug Mat.		No./Bur		84 Lng	1 m
38	Bundles 1 par 1 ser	Gasket Mat.		Pitch	68.35/	59.19	Staggere
39		Corr. Allow.	3.18mm	6		FIN	
40	Bundle frame Galvanized steel	Inlet nozzle (1)	254 mm	Type	I-type we	eld	
41	MISCELLANEOUS	Outlet nozzle(1)	254 mm	Materia	I CS		
42	Struct. Mount.	Special Nozzles		OD	62	Tks	0.58mr
40	Surf.Prep	Rating		No.	197#/m	Des Tem	р °С
43							

Table 6.	Hot g	gas recu	perator s	pecificati	on in	boiler

Table 7. Theoretical combustion data after improving of boiler efficiency

			•
	Actual performance of boiler	Optimizing excess air	Installation of economizer
CO ₂ (kmol/hr)	14.86	13.99	13.50
CH ₄ (kmol/hr)	14.26	13.43	12.90
C_2H_6 (kmol/hr)	0.294	0.17	0.21
Volume of fuel (m ³ /hr)	360.12	332.66	321.98
Velocity (m/s)	16	12	9.7

- [4] Radwan M., Different Possible Ways for Saving Energy in the Cement Production, Advances in Applied Science Research (2012) 3:1162-1174.
- [5] Onut S., Soner S., Analysis of Energy Use and Efficiency in Turkish Manufacturing Sector SMEs, Energy Conversion and Management (2007) 48:384-94.
- [6] Thermal Energy Equipment: Boilers & Thermic Fluid Heater, Energy Efficiency Guide for Industry in Asia, UNEP (2006) 1-42.
- [7] Boiler plant systems, Business & Government energy Management Division, Energy Management Series for Industry Commerce and Instituations, Ottawa, Ontario, K1A 0E4 (1985).
- [8] Vakkilainen E. K., Ahtila P., Modern Method to Determine Recovery Boiler Efficiency, O Papel (2011) 72:58-66.
- [9] Energy Efficiency and Resource Saving Technologies in Cement Industry, ASIA-Pacific Partnership on Clean Devopment, Cement Task Force, Washington, D.C (2006).
- [10] Gan H., Zhang J., Zeng H., Development of Main Boiler Simulation System for LNG Ship, International Journal of Advancements in Computing Technology (IJACT) (2012) 4:466-475.

- [11] Teir S., Kulla A., Boiler Calculations, Energy Engineering and Environmental Protection (2002) 1-14, Steam Boiler Technology eBook.
- [12] BS 845:1987, Part 1 and 2, Methods for Thermal Performance Assessing of Steam and Hot Water Boilers and Heaters for High Temperature Heat Transfer Fluids, British Standards Institution, London.
- [13] Siegert A., On the Determination of Heat Loss in Chimney Gases, Journal für Gasbeleuchtung und Wasserversorgung (1888).
- [14] Carpenter K., Schmidt C., Kissock K., Common Boiler Excess Air Trends and Strategies to Optimize Efficiency, ACEEE Summer Study on Energy Efficiency in Buildings (2008) 3:52-63.
- [15] William F. P., Efficient Boiler Operations (1996) 1-309. Sourcebook ISBN 0135322685, 9780135322680, Fairmont Press.
- [16] Kristinsson H., Lang S., Boiler Control, Improving Efficiency of Boiler Systems, Lund University, Faculty of Engineering Division of Industrial Electrical Engineering and Automation (2010).
- [17] Eckerlin M., The Importance of Excess Air in the Combustion Process, MAM 406, Energy Conservation in Industry, North Carolina State University (2011).

Appendix A

Mathematical calculation of flue gas analysis and consumption natural gas in the boiler of the Mazandaran cements plantis done as follows:

- 1. Flue gas analysis:
- ✓ Primary components in flue gas per 100 kmol of dry gas:
- =6.66
- = = 6.61 = 0.11
- = = 6.61 = 0.083= = 6.61 = 0.008
- = = 6.61 = 0.003

✓ Primary components in flue gas per kilo mole of dry gas:

- = % / 100=0.97 ===0.02= = 12===0.001===0.0004==3.28✓ Molar mass of fuel: 2. Fuel / air ratio: Mole flow rate ratio: ✓ Mass flow rate ratio: =9.57=16.52
- 3. The volume of gas consumption:
- $= 0.2(m^2) \times 16(m/s) \times 3600 = 11520 m^3/hr$ ==701.37

=654.12/44=14.86

4. Mass flow rate of fuel and air:

=+ =+=16.52+=17.52

Appendix B:

Table B.1. Thermal details of economizer

Thermal Details - General

				Outs	ide				Tube	Side	
Gases (in/out)	ŀ	(g/s	1.1		1.	1					
Liquids (in/out)	ŀ	(g/s						58.33	33	58.3	333
Temperature (in/out)		°C	241		16	0		132		132	2.79
Dew point or bubble point		°C									
Film coefficients	W/(m	² K)		34					591.	3	
Fouling resistance	m² l	k/w		0.000	88						
Velocity		m/s		3.0	9				1.4	19	
Pressure drop (allow./calc.)	Pa/	bar		249/2	9			0.6	8948/	0.029	71
Total heat exchanged	kW	1	96.9	Size		1	762	x 107	9.73		mm
Overall coef dirty	W/(m ² K)		19.5	Bund	lles 1		pai	r 1	ser	1	
Effective surface area	m²		85.4	Fin	197	/ #/n	n	OD		62	mm
MTD corrected	°C		59.25	Tube	OD	30)	Tks	1.65		mm
MTD correction factor			1	Tube	passe	es	1		ho	r	

Thermal Details - Thermal Resistances

		Clean	Spec. foul	Max. foul
Area reqd.	m²	82.1	83.9	85.4
Excess surface	%	3.94	1.69	
Overall coefficient	W/(m² K)	19.9	19.5	19.2
Overall resistance	m² K/W	0.05019	0.0513	0.05217
Outside fouling	m² K/W	0.0	0.00088	0.00198
Tube side fouling (at tube ID)		0.0		
Distribution of overall resistance				
Outside film	%	58.56	57.29	56.34
Outside fouling	%		2.13	3.79
Tube wall 0.00003	%	0.66	0.65	0.64
Tube side fouling	%	0.0		
Tube side film	%	40.82	39.93	39.27

Thermal Details - Coefficients

		Outside	Tube Side
Film coefficients	W/(m² K)		
As calculated by program		34	591.3
As specified by user in input			
User specified multiplier		1	1
As used in design		34	591.3
Desuperheating coefficient			
Condensing coefficient			
Sensible coefficient		34	591.3
Boiling coefficient			
Liquid cooling coefficient			
Reynolds number		2155.97	5981.47
Fin efficiency factor		0.79	
Mean metal temperature	°C		160.29

Thermal Details - Pressure Drop

		Outside	Tube	Side
Pressure drop		Pa	ba	ar
Allowable		249	0.68	948
Calculated, clean		29	0.02	971
Calculated, dirty			0.02	971
User specified multi	plier	1	1	
Velocity and pressure Outside	%dp	Tube Side	m/s	%dp
Fan	70 u p	Inlet nozzle	1.38	13.34
Bundle	100	Entering tubes	1.49	15.48
Accessories		Through tubes	1.49	42.36
Development and the state		Exiting tubes	1.49	15.48
Bundle velocity Face velocity	3.09m/s1.71m/s	Outlet nozzle	1.38	13.34

Table B.2. Mechanical details of economizer

Mechanical Details - Tubes

Tube material		Carbon Steel	Fin material		
Tube length	m	1	Fin type		I-type weld
Tube OD	mm	30	Fin OD	mm	62
Tube wall thickness	mm	1.65	Fin thickness	mm	0.58
Tube pitch face row	mm	68.35	Fin density	#/m	197
Tube pitch rows deep	mm	59.19	Fin segment width	mm	
Tube pattern		Staggered			
Pass type					
Area ratio Ao/Ai		12.11			

Mechanical Details - Bundle

Unit arrangement				Per bundle	Per Unit	
Unit length/width	1762/1079	.73 mm	Number of tubes		84	84
Bays in par/ser		/	Tube passes		1	1
Bundles per unit			Tubes in face row		14	14
In parallel		1	Tube rows deep		6	6
In series		1				
Pass number	1					
Tubes in face row	14					
Tube rows deep	6					
Nozzles			Inlet		Outlet	Intermediate
Nominal ID		mm	254		254	
Number per bundle			1		1	
Rho*V2		kg/(m s²)	1590		1590	